Matches in SemOpenAlex for { <https://semopenalex.org/work/W2057691392> ?p ?o ?g. }
- W2057691392 endingPage "e55158" @default.
- W2057691392 startingPage "e55158" @default.
- W2057691392 abstract "Species distribution models (SDMs) trained on presence-only data are frequently used in ecological research and conservation planning. However, users of SDM software are faced with a variety of options, and it is not always obvious how selecting one option over another will affect model performance. Working with MaxEnt software and with tree fern presence data from New Zealand, we assessed whether (a) choosing to correct for geographical sampling bias and (b) using complex environmental response curves have strong effects on goodness of fit. SDMs were trained on tree fern data, obtained from an online biodiversity data portal, with two sources that differed in size and geographical sampling bias: a small, widely-distributed set of herbarium specimens and a large, spatially clustered set of ecological survey records. We attempted to correct for geographical sampling bias by incorporating sampling bias grids in the SDMs, created from all georeferenced vascular plants in the datasets, and explored model complexity issues by fitting a wide variety of environmental response curves (known as “feature types” in MaxEnt). In each case, goodness of fit was assessed by comparing predicted range maps with tree fern presences and absences using an independent national dataset to validate the SDMs. We found that correcting for geographical sampling bias led to major improvements in goodness of fit, but did not entirely resolve the problem: predictions made with clustered ecological data were inferior to those made with the herbarium dataset, even after sampling bias correction. We also found that the choice of feature type had negligible effects on predictive performance, indicating that simple feature types may be sufficient once sampling bias is accounted for. Our study emphasizes the importance of reducing geographical sampling bias, where possible, in datasets used to train SDMs, and the effectiveness and essentialness of sampling bias correction within MaxEnt." @default.
- W2057691392 created "2016-06-24" @default.
- W2057691392 creator A5002838975 @default.
- W2057691392 creator A5066192874 @default.
- W2057691392 creator A5089619012 @default.
- W2057691392 date "2013-02-14" @default.
- W2057691392 modified "2023-10-17" @default.
- W2057691392 title "The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models" @default.
- W2057691392 cites W1504311403 @default.
- W2057691392 cites W1526319989 @default.
- W2057691392 cites W1568201516 @default.
- W2057691392 cites W1582309298 @default.
- W2057691392 cites W1592224156 @default.
- W2057691392 cites W1902877952 @default.
- W2057691392 cites W1975652353 @default.
- W2057691392 cites W1979331343 @default.
- W2057691392 cites W1980193681 @default.
- W2057691392 cites W1981419118 @default.
- W2057691392 cites W1986643700 @default.
- W2057691392 cites W1993084861 @default.
- W2057691392 cites W2033686454 @default.
- W2057691392 cites W2052437010 @default.
- W2057691392 cites W2057432150 @default.
- W2057691392 cites W2079864021 @default.
- W2057691392 cites W2086104719 @default.
- W2057691392 cites W2089454337 @default.
- W2057691392 cites W2096152168 @default.
- W2057691392 cites W2096836820 @default.
- W2057691392 cites W2096993717 @default.
- W2057691392 cites W2097601813 @default.
- W2057691392 cites W2098827790 @default.
- W2057691392 cites W2100533358 @default.
- W2057691392 cites W2107695795 @default.
- W2057691392 cites W2110248929 @default.
- W2057691392 cites W2111684210 @default.
- W2057691392 cites W2111796869 @default.
- W2057691392 cites W2111954076 @default.
- W2057691392 cites W2112315008 @default.
- W2057691392 cites W2112535479 @default.
- W2057691392 cites W2112776483 @default.
- W2057691392 cites W2113965979 @default.
- W2057691392 cites W2115268776 @default.
- W2057691392 cites W2116238035 @default.
- W2057691392 cites W2117581352 @default.
- W2057691392 cites W2119202692 @default.
- W2057691392 cites W2120160157 @default.
- W2057691392 cites W2123337039 @default.
- W2057691392 cites W2123379755 @default.
- W2057691392 cites W2135004835 @default.
- W2057691392 cites W2138822692 @default.
- W2057691392 cites W2139416101 @default.
- W2057691392 cites W2147016896 @default.
- W2057691392 cites W2149234489 @default.
- W2057691392 cites W2151940493 @default.
- W2057691392 cites W2155218173 @default.
- W2057691392 cites W2159862940 @default.
- W2057691392 cites W2162467623 @default.
- W2057691392 cites W2319146734 @default.
- W2057691392 cites W4240531403 @default.
- W2057691392 cites W4249209379 @default.
- W2057691392 doi "https://doi.org/10.1371/journal.pone.0055158" @default.
- W2057691392 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3734329" @default.
- W2057691392 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23457462" @default.
- W2057691392 hasPublicationYear "2013" @default.
- W2057691392 type Work @default.
- W2057691392 sameAs 2057691392 @default.
- W2057691392 citedByCount "385" @default.
- W2057691392 countsByYear W20576913922013 @default.
- W2057691392 countsByYear W20576913922014 @default.
- W2057691392 countsByYear W20576913922015 @default.
- W2057691392 countsByYear W20576913922016 @default.
- W2057691392 countsByYear W20576913922017 @default.
- W2057691392 countsByYear W20576913922018 @default.
- W2057691392 countsByYear W20576913922019 @default.
- W2057691392 countsByYear W20576913922020 @default.
- W2057691392 countsByYear W20576913922021 @default.
- W2057691392 countsByYear W20576913922022 @default.
- W2057691392 countsByYear W20576913922023 @default.
- W2057691392 crossrefType "journal-article" @default.
- W2057691392 hasAuthorship W2057691392A5002838975 @default.
- W2057691392 hasAuthorship W2057691392A5066192874 @default.
- W2057691392 hasAuthorship W2057691392A5089619012 @default.
- W2057691392 hasBestOaLocation W20576913921 @default.
- W2057691392 hasConcept C105795698 @default.
- W2057691392 hasConcept C106131492 @default.
- W2057691392 hasConcept C113174947 @default.
- W2057691392 hasConcept C124101348 @default.
- W2057691392 hasConcept C129848803 @default.
- W2057691392 hasConcept C132124917 @default.
- W2057691392 hasConcept C132480984 @default.
- W2057691392 hasConcept C134306372 @default.
- W2057691392 hasConcept C138885662 @default.
- W2057691392 hasConcept C140779682 @default.
- W2057691392 hasConcept C144024400 @default.
- W2057691392 hasConcept C149923435 @default.
- W2057691392 hasConcept C159985019 @default.
- W2057691392 hasConcept C185933670 @default.
- W2057691392 hasConcept C18903297 @default.