Matches in SemOpenAlex for { <https://semopenalex.org/work/W2057823688> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2057823688 endingPage "145" @default.
- W2057823688 startingPage "135" @default.
- W2057823688 abstract "This paper introduces a neural network-based model for solving the percent markup estimation problem. Neural networks (NNs) are utilized as systems able to generalize solutions by learning from a set of examples representing previous encounters of problems and their corresponding solutions or decisions. NNs utilize these holistic examples (without their underlying logic) as patterns, to simulate the decision process and its related knowledge for devising solutions to new encounters even with incomplete and/or noisy information. In this paper, existing markup estimation models are reviewed and their limitations identified. The characteristics that render the markup problem more suitable for NN modeling are outlined. The markup estimation process is analyzed and the decision-governing attributes identified. Two alternative designs for the NN model are examined and their results compared. The first model is based on a single neural network architecture and the second is based on a five-network hierarchical system. As opposed to the single large network, the hierarchical model consists of four sub-networks, pertaining to the assessment of: job uncertainty; job complexity; marked conditions; and company capabilities. The results of the four sub-networks form the input to a macro-level neural network designed to estimate the optimum markup, for a given project environment. A questionnaire survey is developed to elicit the required knowledge, from general contractors in Canada and the U.S.A., pertaining to bidding situations or encounters of some past projects. Analyses of the survey responses are utilized to structure, design, implement, train and test the two NN models. The results show that the two NN models can be trained satisfactorily on the training examples presented, however the single-network model generalizes unseen examples better than the hierarchical model. Issues regarding practical implementation of the NN model, improving its generalization capabilities and integration with other decision analysis tools are outlined." @default.
- W2057823688 created "2016-06-24" @default.
- W2057823688 creator A5080616432 @default.
- W2057823688 creator A5081966673 @default.
- W2057823688 date "1993-04-01" @default.
- W2057823688 modified "2023-10-14" @default.
- W2057823688 title "Markup estimation using neural network methodology" @default.
- W2057823688 cites W1537093164 @default.
- W2057823688 cites W1969830822 @default.
- W2057823688 cites W1980623834 @default.
- W2057823688 cites W2001855853 @default.
- W2057823688 cites W2022013728 @default.
- W2057823688 cites W2027616687 @default.
- W2057823688 cites W2039637367 @default.
- W2057823688 cites W2046732147 @default.
- W2057823688 cites W2054448874 @default.
- W2057823688 cites W2081992605 @default.
- W2057823688 cites W2279454563 @default.
- W2057823688 cites W2285457456 @default.
- W2057823688 doi "https://doi.org/10.1016/0956-0521(93)90039-y" @default.
- W2057823688 hasPublicationYear "1993" @default.
- W2057823688 type Work @default.
- W2057823688 sameAs 2057823688 @default.
- W2057823688 citedByCount "14" @default.
- W2057823688 countsByYear W20578236882015 @default.
- W2057823688 countsByYear W20578236882016 @default.
- W2057823688 countsByYear W20578236882019 @default.
- W2057823688 countsByYear W20578236882020 @default.
- W2057823688 countsByYear W20578236882021 @default.
- W2057823688 countsByYear W20578236882023 @default.
- W2057823688 crossrefType "journal-article" @default.
- W2057823688 hasAuthorship W2057823688A5080616432 @default.
- W2057823688 hasAuthorship W2057823688A5081966673 @default.
- W2057823688 hasConcept C111919701 @default.
- W2057823688 hasConcept C119857082 @default.
- W2057823688 hasConcept C124101348 @default.
- W2057823688 hasConcept C127413603 @default.
- W2057823688 hasConcept C144133560 @default.
- W2057823688 hasConcept C154945302 @default.
- W2057823688 hasConcept C162853370 @default.
- W2057823688 hasConcept C177264268 @default.
- W2057823688 hasConcept C199360897 @default.
- W2057823688 hasConcept C201995342 @default.
- W2057823688 hasConcept C41008148 @default.
- W2057823688 hasConcept C45874996 @default.
- W2057823688 hasConcept C50644808 @default.
- W2057823688 hasConcept C8797682 @default.
- W2057823688 hasConcept C9233905 @default.
- W2057823688 hasConcept C96250715 @default.
- W2057823688 hasConcept C98045186 @default.
- W2057823688 hasConceptScore W2057823688C111919701 @default.
- W2057823688 hasConceptScore W2057823688C119857082 @default.
- W2057823688 hasConceptScore W2057823688C124101348 @default.
- W2057823688 hasConceptScore W2057823688C127413603 @default.
- W2057823688 hasConceptScore W2057823688C144133560 @default.
- W2057823688 hasConceptScore W2057823688C154945302 @default.
- W2057823688 hasConceptScore W2057823688C162853370 @default.
- W2057823688 hasConceptScore W2057823688C177264268 @default.
- W2057823688 hasConceptScore W2057823688C199360897 @default.
- W2057823688 hasConceptScore W2057823688C201995342 @default.
- W2057823688 hasConceptScore W2057823688C41008148 @default.
- W2057823688 hasConceptScore W2057823688C45874996 @default.
- W2057823688 hasConceptScore W2057823688C50644808 @default.
- W2057823688 hasConceptScore W2057823688C8797682 @default.
- W2057823688 hasConceptScore W2057823688C9233905 @default.
- W2057823688 hasConceptScore W2057823688C96250715 @default.
- W2057823688 hasConceptScore W2057823688C98045186 @default.
- W2057823688 hasIssue "2-3" @default.
- W2057823688 hasLocation W20578236881 @default.
- W2057823688 hasOpenAccess W2057823688 @default.
- W2057823688 hasPrimaryLocation W20578236881 @default.
- W2057823688 hasRelatedWork W1967262608 @default.
- W2057823688 hasRelatedWork W2040633022 @default.
- W2057823688 hasRelatedWork W2080940509 @default.
- W2057823688 hasRelatedWork W2116397081 @default.
- W2057823688 hasRelatedWork W2375819544 @default.
- W2057823688 hasRelatedWork W2767709230 @default.
- W2057823688 hasRelatedWork W2961085424 @default.
- W2057823688 hasRelatedWork W4306674287 @default.
- W2057823688 hasRelatedWork W2510885095 @default.
- W2057823688 hasRelatedWork W4224009465 @default.
- W2057823688 hasVolume "4" @default.
- W2057823688 isParatext "false" @default.
- W2057823688 isRetracted "false" @default.
- W2057823688 magId "2057823688" @default.
- W2057823688 workType "article" @default.