Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058097207> ?p ?o ?g. }
- W2058097207 endingPage "140" @default.
- W2058097207 startingPage "131" @default.
- W2058097207 abstract "The problem of conditional simulation of non-Gaussian stochastic processes and fields has gained a significant interest recently because of its applications in many fields, such as wind engineering, ocean engineering, and soil engineering. In this paper, the support vector machines (SVM) approach is developed for the conditional simulation of non-Gaussian stochastic processes and fields. To show the advantages of the presented method, the conditional simulation of non-Gaussian fluctuating wind pressures is carried out by using SVM and artificial neural networks (ANN). SVM considers three kinds of kernel function, such as linear function, Gaussian radial basis function, and exponential radial basis function, whereas ANN employs back-propagation and generalized regression. In machine learning of these artificial intelligences, two ways (interpolation and extrapolation) are employed to train finite non-Gaussian samples. The feasibility and validity of these algorithms are evaluated through the correlation coefficients, root mean square errors, skewness errors, and kurtosis errors between simulated samples and target samples and probability density functions (PDF), power spectral density (PSD) functions, and autocorrelation functions (ACF) of the simulated non-Gaussian fluctuating wind pressures versus their corresponding targets. The results show that the accuracy and effectiveness of SVM with an appropriate kernel function are superior to the back-propagation neural network (BPNN) and generalized regression neural network (GRNN). Furthermore, the advantage of the presented SVM approach is very obvious when the trained non-Gaussian samples are few." @default.
- W2058097207 created "2016-06-24" @default.
- W2058097207 creator A5001097658 @default.
- W2058097207 creator A5046884970 @default.
- W2058097207 date "2012-01-01" @default.
- W2058097207 modified "2023-09-26" @default.
- W2058097207 title "Support Vector Machines Approach to Conditional Simulation of Non-Gaussian Stochastic Process" @default.
- W2058097207 cites W1597654140 @default.
- W2058097207 cites W1964357740 @default.
- W2058097207 cites W1970769833 @default.
- W2058097207 cites W1974202130 @default.
- W2058097207 cites W1977808362 @default.
- W2058097207 cites W1988518729 @default.
- W2058097207 cites W1989267357 @default.
- W2058097207 cites W1989383456 @default.
- W2058097207 cites W1990476418 @default.
- W2058097207 cites W1994706696 @default.
- W2058097207 cites W2007902262 @default.
- W2058097207 cites W2012233266 @default.
- W2058097207 cites W2015111096 @default.
- W2058097207 cites W2024677628 @default.
- W2058097207 cites W2026289969 @default.
- W2058097207 cites W2029238526 @default.
- W2058097207 cites W2036224061 @default.
- W2058097207 cites W2037931255 @default.
- W2058097207 cites W2043099482 @default.
- W2058097207 cites W2043795619 @default.
- W2058097207 cites W2046308710 @default.
- W2058097207 cites W2047809687 @default.
- W2058097207 cites W2048466578 @default.
- W2058097207 cites W2060462817 @default.
- W2058097207 cites W2067896443 @default.
- W2058097207 cites W2076298237 @default.
- W2058097207 cites W2076411464 @default.
- W2058097207 cites W2082639634 @default.
- W2058097207 cites W2093137659 @default.
- W2058097207 cites W2094819354 @default.
- W2058097207 cites W2109411546 @default.
- W2058097207 cites W2139212933 @default.
- W2058097207 cites W2149723649 @default.
- W2058097207 cites W2165639402 @default.
- W2058097207 cites W2169231282 @default.
- W2058097207 cites W2972568374 @default.
- W2058097207 cites W4249588896 @default.
- W2058097207 doi "https://doi.org/10.1061/(asce)cp.1943-5487.0000113" @default.
- W2058097207 hasPublicationYear "2012" @default.
- W2058097207 type Work @default.
- W2058097207 sameAs 2058097207 @default.
- W2058097207 citedByCount "9" @default.
- W2058097207 countsByYear W20580972072013 @default.
- W2058097207 countsByYear W20580972072014 @default.
- W2058097207 countsByYear W20580972072015 @default.
- W2058097207 countsByYear W20580972072016 @default.
- W2058097207 countsByYear W20580972072018 @default.
- W2058097207 countsByYear W20580972072022 @default.
- W2058097207 countsByYear W20580972072023 @default.
- W2058097207 crossrefType "journal-article" @default.
- W2058097207 hasAuthorship W2058097207A5001097658 @default.
- W2058097207 hasAuthorship W2058097207A5046884970 @default.
- W2058097207 hasConcept C105795698 @default.
- W2058097207 hasConcept C11413529 @default.
- W2058097207 hasConcept C114614502 @default.
- W2058097207 hasConcept C119857082 @default.
- W2058097207 hasConcept C121332964 @default.
- W2058097207 hasConcept C12267149 @default.
- W2058097207 hasConcept C154945302 @default.
- W2058097207 hasConcept C155032097 @default.
- W2058097207 hasConcept C163716315 @default.
- W2058097207 hasConcept C197055811 @default.
- W2058097207 hasConcept C33923547 @default.
- W2058097207 hasConcept C41008148 @default.
- W2058097207 hasConcept C50644808 @default.
- W2058097207 hasConcept C51267290 @default.
- W2058097207 hasConcept C61326573 @default.
- W2058097207 hasConcept C62520636 @default.
- W2058097207 hasConcept C7218915 @default.
- W2058097207 hasConcept C74193536 @default.
- W2058097207 hasConcept C81692654 @default.
- W2058097207 hasConcept C98856871 @default.
- W2058097207 hasConceptScore W2058097207C105795698 @default.
- W2058097207 hasConceptScore W2058097207C11413529 @default.
- W2058097207 hasConceptScore W2058097207C114614502 @default.
- W2058097207 hasConceptScore W2058097207C119857082 @default.
- W2058097207 hasConceptScore W2058097207C121332964 @default.
- W2058097207 hasConceptScore W2058097207C12267149 @default.
- W2058097207 hasConceptScore W2058097207C154945302 @default.
- W2058097207 hasConceptScore W2058097207C155032097 @default.
- W2058097207 hasConceptScore W2058097207C163716315 @default.
- W2058097207 hasConceptScore W2058097207C197055811 @default.
- W2058097207 hasConceptScore W2058097207C33923547 @default.
- W2058097207 hasConceptScore W2058097207C41008148 @default.
- W2058097207 hasConceptScore W2058097207C50644808 @default.
- W2058097207 hasConceptScore W2058097207C51267290 @default.
- W2058097207 hasConceptScore W2058097207C61326573 @default.
- W2058097207 hasConceptScore W2058097207C62520636 @default.
- W2058097207 hasConceptScore W2058097207C7218915 @default.
- W2058097207 hasConceptScore W2058097207C74193536 @default.
- W2058097207 hasConceptScore W2058097207C81692654 @default.