Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058186642> ?p ?o ?g. }
- W2058186642 endingPage "42" @default.
- W2058186642 startingPage "27" @default.
- W2058186642 abstract "In non-linear system identification, the available observed data are conventionally partitioned into two parts: the training data that are used for model identification and the test data that are used for model performance testing. This sort of ‘hold-out’ or ‘split-sample’ data partitioning method is convenient and the associated model identification procedure is in general easy to implement. The resultant model obtained from such a once-partitioned single training dataset, however, may occasionally lack robustness and generalisation to represent future unseen data, because the performance of the identified model may be highly dependent on how the data partition is made. To overcome the drawback of the hold-out data partitioning method, this study presents a new random subsampling and multifold modelling (RSMM) approach to produce less biased or preferably unbiased models. The basic idea and the associated procedure are as follows. First, generate K training datasets (and also K validation datasets), using a K-fold random subsampling method. Secondly, detect significant model terms and identify a common model structure that fits all the K datasets using a new proposed common model selection approach, called the multiple orthogonal search algorithm. Finally, estimate and refine the model parameters for the identified common-structured model using a multifold parameter estimation method. The proposed method can produce robust models with better generalisation performance." @default.
- W2058186642 created "2016-06-24" @default.
- W2058186642 creator A5026841543 @default.
- W2058186642 creator A5034885233 @default.
- W2058186642 date "2008-10-21" @default.
- W2058186642 modified "2023-09-23" @default.
- W2058186642 title "Improved model identification for non-linear systems using a random subsampling and multifold modelling (RSMM) approach" @default.
- W2058186642 cites W1814500939 @default.
- W2058186642 cites W1965901723 @default.
- W2058186642 cites W1968371014 @default.
- W2058186642 cites W1973217014 @default.
- W2058186642 cites W1975279341 @default.
- W2058186642 cites W1976927254 @default.
- W2058186642 cites W1984016184 @default.
- W2058186642 cites W1985975093 @default.
- W2058186642 cites W1988712483 @default.
- W2058186642 cites W1990381576 @default.
- W2058186642 cites W1994567799 @default.
- W2058186642 cites W1995398986 @default.
- W2058186642 cites W1997673380 @default.
- W2058186642 cites W1997986924 @default.
- W2058186642 cites W2014382707 @default.
- W2058186642 cites W2014725748 @default.
- W2058186642 cites W2014878134 @default.
- W2058186642 cites W2016144604 @default.
- W2058186642 cites W2024426258 @default.
- W2058186642 cites W2025637389 @default.
- W2058186642 cites W2031229891 @default.
- W2058186642 cites W2033872649 @default.
- W2058186642 cites W2035100132 @default.
- W2058186642 cites W2040615655 @default.
- W2058186642 cites W2043313903 @default.
- W2058186642 cites W2044692866 @default.
- W2058186642 cites W2045537522 @default.
- W2058186642 cites W2050297026 @default.
- W2058186642 cites W2054658115 @default.
- W2058186642 cites W2068458829 @default.
- W2058186642 cites W2073738917 @default.
- W2058186642 cites W2091170789 @default.
- W2058186642 cites W2091874430 @default.
- W2058186642 cites W2092587625 @default.
- W2058186642 cites W2099531242 @default.
- W2058186642 cites W2102380305 @default.
- W2058186642 cites W2105778048 @default.
- W2058186642 cites W2111814036 @default.
- W2058186642 cites W2119739937 @default.
- W2058186642 cites W2134288234 @default.
- W2058186642 cites W2142635246 @default.
- W2058186642 cites W2149550779 @default.
- W2058186642 cites W2154679345 @default.
- W2058186642 cites W2168090847 @default.
- W2058186642 cites W2168175751 @default.
- W2058186642 cites W2170287445 @default.
- W2058186642 cites W2171247088 @default.
- W2058186642 cites W2327088997 @default.
- W2058186642 cites W2492322411 @default.
- W2058186642 cites W2743348267 @default.
- W2058186642 cites W3106889297 @default.
- W2058186642 cites W40479804 @default.
- W2058186642 cites W4205969772 @default.
- W2058186642 cites W4234698323 @default.
- W2058186642 cites W4240172095 @default.
- W2058186642 cites W603923844 @default.
- W2058186642 doi "https://doi.org/10.1080/00207170801955420" @default.
- W2058186642 hasPublicationYear "2008" @default.
- W2058186642 type Work @default.
- W2058186642 sameAs 2058186642 @default.
- W2058186642 citedByCount "19" @default.
- W2058186642 countsByYear W20581866422012 @default.
- W2058186642 countsByYear W20581866422013 @default.
- W2058186642 countsByYear W20581866422015 @default.
- W2058186642 countsByYear W20581866422017 @default.
- W2058186642 countsByYear W20581866422018 @default.
- W2058186642 countsByYear W20581866422019 @default.
- W2058186642 countsByYear W20581866422020 @default.
- W2058186642 countsByYear W20581866422021 @default.
- W2058186642 countsByYear W20581866422022 @default.
- W2058186642 crossrefType "journal-article" @default.
- W2058186642 hasAuthorship W2058186642A5026841543 @default.
- W2058186642 hasAuthorship W2058186642A5034885233 @default.
- W2058186642 hasBestOaLocation W20581866422 @default.
- W2058186642 hasConcept C104317684 @default.
- W2058186642 hasConcept C11413529 @default.
- W2058186642 hasConcept C116834253 @default.
- W2058186642 hasConcept C119247159 @default.
- W2058186642 hasConcept C119857082 @default.
- W2058186642 hasConcept C124101348 @default.
- W2058186642 hasConcept C154945302 @default.
- W2058186642 hasConcept C163175372 @default.
- W2058186642 hasConcept C185592680 @default.
- W2058186642 hasConcept C23123220 @default.
- W2058186642 hasConcept C2779714256 @default.
- W2058186642 hasConcept C2780009758 @default.
- W2058186642 hasConcept C41008148 @default.
- W2058186642 hasConcept C55493867 @default.
- W2058186642 hasConcept C59822182 @default.
- W2058186642 hasConcept C63479239 @default.
- W2058186642 hasConcept C86803240 @default.