Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058199510> ?p ?o ?g. }
- W2058199510 endingPage "13" @default.
- W2058199510 startingPage "1" @default.
- W2058199510 abstract "There is a continuing need to increase the brightness and photostability of fluorophores for use in biotechnology, medical diagnostics, and cell imaging. One approach developed during the past decade is to use metallic surfaces and nanostructures. It is now known that excited state fluorophores display interactions with surface plasmons, which can increase the radiative decay rates, modify the spatial distribution of emission, and result in directional emission. One important example is surface plasmon-coupled emission (SPCE). In this phenomenon, the fluorophores at close distances from a thin metal film, typically silver, display emission over a small range of angles into the substrate. A disadvantage of SPCE is that the emission occurs at large angles relative to the surface normal and at angles that are larger than the critical angle for the glass substrate. The large angles make it difficult to collect all of the coupled emission and have prevented the use of SPCE with high-throughput and/or array applications. In the current article, we describe a simple multilayer metal–dielectric structure that allows excitation with light that is perpendicular (normal) to the plane and provides emission within a narrow angular distribution that is normal to the plane. This structure consists of a thin silver film on top of a multilayer dielectric Bragg grating, with no nanoscale features except for the metal or dielectric layer thicknesses. Our structure is designed to support optical Tamm states, which are trapped electromagnetic modes between the metal film and the underlying Bragg grating. We used simulations with the transfer matrix method to understand the optical properties of Tamm states and localization of the modes or electric fields in the structure. Tamm states can exist with zero in-plane wavevector components and can be created without the use of a coupling prism. We show that fluorophores on top of the metal film can interact with the Tamm state under the metal film and display Tamm state-coupled emission (TSCE). In contrast to SPCE, the Tamm states can display either S or P polarization. The TSCE angle is highly sensitive to wavelength, which suggests the use of Tamm structures to provide both directional emission and wavelength dispersion. Metallic structures can modify fluorophore decay rates but also have high losses. Photonic crystals have low losses but may lack the enhanced light-induced fields near metals. The combination of plasmonic and photonic structures offers the opportunity for radiative decay engineering to design new formats for clinical testing and other fluorescence-based applications." @default.
- W2058199510 created "2016-06-24" @default.
- W2058199510 creator A5038945633 @default.
- W2058199510 creator A5074798370 @default.
- W2058199510 creator A5076084475 @default.
- W2058199510 date "2014-01-01" @default.
- W2058199510 modified "2023-10-15" @default.
- W2058199510 title "Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic–photonic structure" @default.
- W2058199510 cites W1548310863 @default.
- W2058199510 cites W1883449737 @default.
- W2058199510 cites W1968812657 @default.
- W2058199510 cites W1968884854 @default.
- W2058199510 cites W1970845558 @default.
- W2058199510 cites W1972171046 @default.
- W2058199510 cites W1972522291 @default.
- W2058199510 cites W1974215395 @default.
- W2058199510 cites W1977170384 @default.
- W2058199510 cites W1981797704 @default.
- W2058199510 cites W1981880287 @default.
- W2058199510 cites W1984623440 @default.
- W2058199510 cites W1985728278 @default.
- W2058199510 cites W1993568854 @default.
- W2058199510 cites W1993641861 @default.
- W2058199510 cites W1998464891 @default.
- W2058199510 cites W1999150312 @default.
- W2058199510 cites W2002238943 @default.
- W2058199510 cites W2003995109 @default.
- W2058199510 cites W2005361472 @default.
- W2058199510 cites W2008264693 @default.
- W2058199510 cites W2014950254 @default.
- W2058199510 cites W2019133050 @default.
- W2058199510 cites W2019619083 @default.
- W2058199510 cites W2020699309 @default.
- W2058199510 cites W2021223600 @default.
- W2058199510 cites W2023147957 @default.
- W2058199510 cites W2024240793 @default.
- W2058199510 cites W2024527913 @default.
- W2058199510 cites W2025169742 @default.
- W2058199510 cites W2027776799 @default.
- W2058199510 cites W2033989618 @default.
- W2058199510 cites W2036521431 @default.
- W2058199510 cites W2039669967 @default.
- W2058199510 cites W2040478963 @default.
- W2058199510 cites W2041349381 @default.
- W2058199510 cites W2049252830 @default.
- W2058199510 cites W2049719089 @default.
- W2058199510 cites W2049889075 @default.
- W2058199510 cites W2050197030 @default.
- W2058199510 cites W2052073603 @default.
- W2058199510 cites W2054384202 @default.
- W2058199510 cites W2054418165 @default.
- W2058199510 cites W2054607976 @default.
- W2058199510 cites W2058587475 @default.
- W2058199510 cites W2059499944 @default.
- W2058199510 cites W2065855895 @default.
- W2058199510 cites W2069848363 @default.
- W2058199510 cites W2071808432 @default.
- W2058199510 cites W2072258143 @default.
- W2058199510 cites W2075689277 @default.
- W2058199510 cites W2076877608 @default.
- W2058199510 cites W2076951286 @default.
- W2058199510 cites W2077928607 @default.
- W2058199510 cites W2078606124 @default.
- W2058199510 cites W2083209930 @default.
- W2058199510 cites W2083926174 @default.
- W2058199510 cites W2085628923 @default.
- W2058199510 cites W2086502055 @default.
- W2058199510 cites W2090588628 @default.
- W2058199510 cites W2090643492 @default.
- W2058199510 cites W2093032674 @default.
- W2058199510 cites W2095132365 @default.
- W2058199510 cites W2095355979 @default.
- W2058199510 cites W2096183341 @default.
- W2058199510 cites W2099361198 @default.
- W2058199510 cites W2110601661 @default.
- W2058199510 cites W2116409413 @default.
- W2058199510 cites W2118526609 @default.
- W2058199510 cites W2126494813 @default.
- W2058199510 cites W2132341951 @default.
- W2058199510 cites W2136784387 @default.
- W2058199510 cites W2139516501 @default.
- W2058199510 cites W2146530920 @default.
- W2058199510 cites W2152244360 @default.
- W2058199510 cites W2152620379 @default.
- W2058199510 cites W2159587145 @default.
- W2058199510 cites W2160021789 @default.
- W2058199510 cites W2326923596 @default.
- W2058199510 cites W3099543825 @default.
- W2058199510 cites W4234125577 @default.
- W2058199510 cites W3100751370 @default.
- W2058199510 doi "https://doi.org/10.1016/j.ab.2013.10.009" @default.
- W2058199510 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4127489" @default.
- W2058199510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24135654" @default.
- W2058199510 hasPublicationYear "2014" @default.
- W2058199510 type Work @default.
- W2058199510 sameAs 2058199510 @default.
- W2058199510 citedByCount "56" @default.
- W2058199510 countsByYear W20581995102014 @default.