Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058257936> ?p ?o ?g. }
- W2058257936 endingPage "340" @default.
- W2058257936 startingPage "313" @default.
- W2058257936 abstract "Journal of Integrative NeuroscienceVol. 04, No. 03, pp. 313-340 (2005) Research ReportsNo AccessSTRUCTURAL AND FUNCTIONAL PROPERTIES OF HOMOLOGOUS ELECTRICAL SYNAPSES BETWEEN RETINAL AMACRINE CELLSSOH HIDAKA, TOSHIAKI KATO, and YOKO HASHIMOTOSOH HIDAKADepartment of Physiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, JapanCorresponding author. Search for more papers by this author , TOSHIAKI KATODepartment of Clinical Laboratory Science, Fujita Health University College, Toyoake, Aichi 470-1192, Japan Search for more papers by this author , and YOKO HASHIMOTODepartment of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku, Tokyo 162-8666, Japan Search for more papers by this author https://doi.org/10.1142/S0219635205000872Cited by:7 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractRetinal amacrine cells regulate activities of retinal ganglion cells, the output neurons to higher visual centers, through cellular mechanism of lateral inhibition in the inner plexiform layer (IPL). Electrical properties of gap junction networks between amacrine cells in the IPL were investigated using combined techniques of intracellular recordings, Lucifer yellow and Neurobiotin injection, dual patch-clamp recordings and high voltage electron microscopy in isolated retinas of cyprinid fish. Six types of gap-junctionally connected amacrine cells were classified after their light-evoked responses to light flashes were recorded. Among them, gap junction networks of three types of amacrine cells were studied with structure-function correlation analysis. Cellular morphology of intercellular connections between three homologous cell classes was characterized. The interconnections between laterally extending dendrites in the IPL were localized at dendritic tip terminals. Three types of cells presented the dendrodendritic connections of tip-contact manner in the homologous cell population. High voltage as well as conventional electron microscopy revealed gap junctions between the dendritic tips of Neurobiotin-coupled cells. Receptive field properties of these amacrine cells were examined, displacing a slit of light along the distance from recording sites in the dorsal intermediate region of the retina. Receptive field size, space length constant, response latency and conduction velocity were measured. Spatial and temporal properties of receptive fields were symmetric along horizontally expanding dendrites in the dorsal retina. Simultaneous dual patch-clamp recordings revealed that the lateral gap junction connections between homologous amacrine cells expressed bidirectional electrical synapses passing Na+ spikes. These results demonstrate that bidirectional electrical transmission in gap junction networks of these amacrine cells is symmetric along the lateral gap junction connections between horizontally extending dendrites. Lateral inhibition regulated by amacrine cells in the IPL appears to be associated with the directional extension of the dendrites and the orientation of dendrodendritic gap junctions.Keywords:Lateral inhibitionretinal amacrine cellsreceptive fielddendritesdendrodendritic gap junctionselectrical synapseselectrical transmissionNa+ spikespatch clamp recordingNeurobiotin couplinghigh voltage electron microscopyretina References J. C. Adams, J. Histochem. Cytochem. 29, 775 (1981). Crossref, Medline, ISI, Google ScholarS. A. Bloomfield, J. Neurophysiol. 68, 711 (1992). Crossref, Medline, ISI, Google ScholarS. P. Brown and R. H. Masland, Nat. Neurosci. 4(1), 44 (2001). Crossref, Medline, ISI, Google ScholarJ. H. Caldwell, N. W. Daw and H. J. Wyatt, J. Physiol. 276, 277 (1978). Crossref, Medline, ISI, Google ScholarY. Chino and Y. Hashimoto, Brain Res. 372, 323 (1986). Crossref, Medline, ISI, Google ScholarJ. E. Cook and D. L. Becker, Microsc. Res. Techniq. 31, 408 (1995). Crossref, Medline, ISI, Google ScholarP. B. Cook and J. S. McReynolds, Nat. Neurosci. 1(8), 714 (1998). Crossref, Medline, ISI, Google ScholarP. B. Cook and J. S. McReynolds, J. Neurophysiol. 79(1), 197 (1998). Crossref, Medline, ISI, Google ScholarP. B. Cook, P. D. Lukasiewicz and J. S. McReynolds, J. Neurosci. 18(6), 2301 (1998). Crossref, Medline, ISI, Google ScholarR. Dermietzelet al., J. Neurosci. 20(22), 8331 (2000). Crossref, Medline, ISI, Google ScholarM. B. A. Djamgoz, J. E. G. Downing and H. J. Wager, Cell Tissue Res. 256, 607 (1989). Medline, ISI, Google ScholarM. B. A. Djamgozet al., J. Comp. Neurol. 301, 171 (1990). Crossref, Medline, ISI, Google ScholarK. Djupsundet al., J. Gen. Physiol. 122(4), 445 (2003). Crossref, Medline, ISI, Google Scholar J. E. Dowling , The Retina: An Approachable Part of the Brain ( Harvard University Press , Massachusetts , 1987 ) . Google ScholarC. Enroth-Cugell and H. G. Jakiela, J. Physiol. 302, 49 (1980). Crossref, Medline, ISI, Google ScholarE. V. Famiglietti, A. Kaneko and M. Tachibana, Science 198, 1267 (1977). Crossref, Medline, ISI, Google ScholarS. Hidaka and Y. Hashimoto, Intercellular Communication through Gap Junctions, Progress in Cell Research 4, eds. Y. Kannoet al. (Elsevier Science, Amsterdam, 1995) pp. 261–264. Crossref, Google ScholarS. Hidaka and A. T. Ishida, Pflugers Arch. 436, 497 (1998). Crossref, Medline, ISI, Google ScholarS. Hidaka and E. Miyachi, The Neural Basis of Early Vision, Keio International Symposium 11, ed. A. Kaneko (Springer-Verlag, Tokyo, 2003) pp. 126–133. Crossref, Google ScholarS. Hidaka, Y. Akahori and Y. Kurosawa, J. Neurosci. 24, 10553 (2004). Crossref, Medline, ISI, Google ScholarS. Hidaka, B. N. Christensen and K. Naka, J. Comp. Neurol. 247, 181 (1986). Crossref, Medline, ISI, Google ScholarS. Hidaka, T. Kato and E. Miyachi, J. Integr. Neurosci. 1(1), 3 (2002). Link, ISI, Google ScholarS. Hidakaet al., Brain Res. 498, 53 (1989). Crossref, Medline, ISI, Google ScholarS. Hidakaet al., Neuroreport 5, 29 (1993). Crossref, Medline, ISI, Google ScholarA. L. Jacobs and F. S. Werblin, J. Neurophysiol. 80(1), 447 (1998). Crossref, Medline, ISI, Google ScholarA. Kaneko, J. Physiol. London 207, 623 (1970). Crossref, Google ScholarA. Kaneko, J. Physiol. London 235, 133 (1973). Crossref, Google ScholarR. Llinas, R. Baker and C. Sotelo, J. Neurophysiol. 37, 560 (1974). Crossref, Medline, ISI, Google ScholarY. Lu, S. Hidaka and Y. Hashimoto, J. Tokyo Wom. Med. Coll. 65, 108 (1995). ISI, Google ScholarM. A. MacNeil and R. H. Masland, Neuron 20(5), 971 (1998). Crossref, Medline, ISI, Google ScholarR. H. Masland, Nat. Neurosci. 4, 877 (2001). Crossref, Medline, ISI, Google ScholarS. C. Massey and S. L. Mills, Visual Neurosci. 16(6), 1181 (1999). Crossref, Medline, ISI, Google ScholarM. J. McMahon, O. S. Packer and D. M. Dacey, J. Neurosci. 24, 3736 (2004). Crossref, Medline, ISI, Google ScholarK. Naka and B. N. Christensen, Science 214, 462 (1981). Crossref, Medline, ISI, Google ScholarK. Negishi and T. Teranishi, Neurosci. Lett. 115, 1 (1990). Crossref, Medline, ISI, Google ScholarM. F. Nolan, S. D. Logan and D. Spanswick, J. Physiol. London 519, 753 (1999). Crossref, Google ScholarJ. J. Pang, F. Gao and S. M. Wu, J. Neurosci. 22(11), 4693 (2002). Crossref, Medline, ISI, Google ScholarB. Roskaet al., J. Neurosci. 20, 1941 (2000). Crossref, Medline, ISI, Google Scholar Poznanski R. R., Umino O., Syncytial integration by a network of coupled bipolar cells in the retina, in Kerkut G. A., Phillis J. W. (eds.), Prog. Neurobiol. 53:273–291, 1997 . Google ScholarH. M. Sakai and K. Naka, J. Neurophysiol. 67, 430 (1992). Crossref, Medline, ISI, Google ScholarH. M. Sakai, H. Machuca and K. Naka, J. Neurophysiol. 78, 2018 (1997). Crossref, Medline, ISI, Google Scholar B. Sakmann and E. Neher , Single-channel Recording , 2nd edn. ( Plenum Press , NY , 1995 ) . Crossref, Google ScholarS. M. Smirnakiset al., Nature 386(6620), 69 (1997). Crossref, Medline, ISI, Google ScholarC. Sotelo and H. Korn, Int. Rev. Cytol. 55, 67 (1978). Crossref, Medline, Google ScholarT. Teranishi and K. Negishi, Vision Res. 31(3), 463 (1991). Crossref, Medline, ISI, Google ScholarT. Teranishi and K. Negishi, Neuroscience 59, 217 (1994). Crossref, Medline, ISI, Google ScholarT. Teranishi, K. Negishi and S. Kato, Neurosci. Lett. 51, 73 (1984). Crossref, Medline, ISI, Google ScholarT. Teranishi, K. Negishi and S. Kato, Neuroscience 20, 935 (1987). Crossref, Medline, ISI, Google ScholarL. N. Thibos and F. S. Werblin, J. Physiol. 278, 101 (1978). Crossref, Medline, ISI, Google ScholarO. Uminoet al., Visual Neurosci. 11, 533 (1994). Crossref, Medline, ISI, Google ScholarD. I. Vaney, Neurosci. Lett. 125, 187 (1991). Crossref, Medline, ISI, Google ScholarD. I. Vaney, J. Neurosci. Meth. 44, 217 (1992). Crossref, Medline, ISI, Google ScholarD. I. Vaney, Prog Retin Eye Res 13, eds. N. N. Osborne and G. J. Chader (Pergamon Press, Oxford, 1994) pp. 301–355. Google ScholarM. L. Veruki and E. Hartveit, Neuron 33, 935 (2002). Crossref, Medline, ISI, Google ScholarH. J. Wagner and E. Wagner, Philos. T. Roy. Soc. B 321, 263 (1988). Crossref, Medline, ISI, Google ScholarF. S. Werblin, Science 175, 1008 (1972). Crossref, Medline, ISI, Google ScholarF. S. Werblin and D. R. Copenhagen, J. Gen. Physiol. 63, 88 (1974). Crossref, Medline, ISI, Google ScholarD. Xin and S. A. Bloomfield, J. Comp. Neurol. 38, 512 (1997). Google Scholar FiguresReferencesRelatedDetailsCited By 7Conflicting effects by antibodies against connexin36 during the action of intracellular Cyclic-AMP onto electrical synapses of retinal ganglion cellsSoh Hidaka21 February 2017 | Journal of Integrative Neuroscience, Vol. 15, No. 04Gap junctional coupling in the vertebrate retina: Variations on one theme?Béla Völgyi, Tamás Kovács-Öller, Tamás Atlasz, Márta Wilhelm and Róbert Gábriel1 May 2013 | Progress in Retinal and Eye Research, Vol. 34Suppression of electrical synapses between retinal amacrine cells of goldfish by intracellular cyclic-AMPSoh Hidaka1 Apr 2012 | Brain Research, Vol. 1449SEROTONERGIC SYNAPSES MODULATE GENERATION OF SPIKES FROM RETINAL GANGLION CELLS OF TELEOSTSSOH HIDAKA21 November 2011 | Journal of Integrative Neuroscience, Vol. 08, No. 03INTRACELLULAR CYCLIC-AMP SUPPRESSES THE PERMEABILITY OF GAP JUNCTIONS BETWEEN RETINAL AMACRINE CELLSSOH HIDAKA2 May 2012 | Journal of Integrative Neuroscience, Vol. 07, No. 01Connexin 35/36 is phosphorylated at regulatory sites in the retinaW. WADE KOTHMANN, XIAOFAN LI, GARY S. BURR and JOHN O'BRIEN20 July 2007 | Visual Neuroscience, Vol. 24, No. 3Phase Boundaries as Electrically Induced PhosphenesJonathan D. Drover and G. Bard Ermentrout1 Jan 2006 | SIAM Journal on Applied Dynamical Systems, Vol. 5, No. 4 Recommended Vol. 04, No. 03 Metrics History Received 20 July 2005 Accepted 25 July 2005 KeywordsLateral inhibitionretinal amacrine cellsreceptive fielddendritesdendrodendritic gap junctionselectrical synapseselectrical transmissionNa+ spikespatch clamp recordingNeurobiotin couplinghigh voltage electron microscopyretinaPDF download" @default.
- W2058257936 created "2016-06-24" @default.
- W2058257936 creator A5021803709 @default.
- W2058257936 creator A5024685157 @default.
- W2058257936 creator A5025229464 @default.
- W2058257936 date "2005-09-01" @default.
- W2058257936 modified "2023-10-14" @default.
- W2058257936 title "STRUCTURAL AND FUNCTIONAL PROPERTIES OF HOMOLOGOUS ELECTRICAL SYNAPSES BETWEEN RETINAL AMACRINE CELLS" @default.
- W2058257936 cites W12394319 @default.
- W2058257936 cites W1266545052 @default.
- W2058257936 cites W1481789758 @default.
- W2058257936 cites W1505038301 @default.
- W2058257936 cites W1522488279 @default.
- W2058257936 cites W1536858825 @default.
- W2058257936 cites W1585609667 @default.
- W2058257936 cites W1619467612 @default.
- W2058257936 cites W1695352463 @default.
- W2058257936 cites W1965537142 @default.
- W2058257936 cites W1973557957 @default.
- W2058257936 cites W1975804331 @default.
- W2058257936 cites W1977694119 @default.
- W2058257936 cites W1980976879 @default.
- W2058257936 cites W1983113602 @default.
- W2058257936 cites W1988813033 @default.
- W2058257936 cites W1990779469 @default.
- W2058257936 cites W1993837836 @default.
- W2058257936 cites W2000787966 @default.
- W2058257936 cites W2003564852 @default.
- W2058257936 cites W2004546191 @default.
- W2058257936 cites W2022229778 @default.
- W2058257936 cites W2030795211 @default.
- W2058257936 cites W2057416251 @default.
- W2058257936 cites W2063640158 @default.
- W2058257936 cites W2064520413 @default.
- W2058257936 cites W2067149275 @default.
- W2058257936 cites W2072673446 @default.
- W2058257936 cites W2072891349 @default.
- W2058257936 cites W2073911163 @default.
- W2058257936 cites W2074083800 @default.
- W2058257936 cites W2075325123 @default.
- W2058257936 cites W2088121546 @default.
- W2058257936 cites W2088862815 @default.
- W2058257936 cites W2089110797 @default.
- W2058257936 cites W2089156616 @default.
- W2058257936 cites W2090091254 @default.
- W2058257936 cites W2092874909 @default.
- W2058257936 cites W2095018051 @default.
- W2058257936 cites W2120123765 @default.
- W2058257936 cites W2130367176 @default.
- W2058257936 cites W2131895683 @default.
- W2058257936 cites W2137703365 @default.
- W2058257936 cites W2150986831 @default.
- W2058257936 cites W2154016518 @default.
- W2058257936 cites W2154606172 @default.
- W2058257936 cites W2170624833 @default.
- W2058257936 cites W2172552212 @default.
- W2058257936 cites W2339519979 @default.
- W2058257936 cites W2416588696 @default.
- W2058257936 cites W4213023152 @default.
- W2058257936 cites W4232807902 @default.
- W2058257936 cites W754055078 @default.
- W2058257936 doi "https://doi.org/10.1142/s0219635205000872" @default.
- W2058257936 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16178061" @default.
- W2058257936 hasPublicationYear "2005" @default.
- W2058257936 type Work @default.
- W2058257936 sameAs 2058257936 @default.
- W2058257936 citedByCount "8" @default.
- W2058257936 countsByYear W20582579362012 @default.
- W2058257936 countsByYear W20582579362013 @default.
- W2058257936 countsByYear W20582579362016 @default.
- W2058257936 crossrefType "journal-article" @default.
- W2058257936 hasAuthorship W2058257936A5021803709 @default.
- W2058257936 hasAuthorship W2058257936A5024685157 @default.
- W2058257936 hasAuthorship W2058257936A5025229464 @default.
- W2058257936 hasConcept C104317684 @default.
- W2058257936 hasConcept C169760540 @default.
- W2058257936 hasConcept C185592680 @default.
- W2058257936 hasConcept C2780827179 @default.
- W2058257936 hasConcept C55493867 @default.
- W2058257936 hasConcept C64894306 @default.
- W2058257936 hasConcept C86803240 @default.
- W2058257936 hasConceptScore W2058257936C104317684 @default.
- W2058257936 hasConceptScore W2058257936C169760540 @default.
- W2058257936 hasConceptScore W2058257936C185592680 @default.
- W2058257936 hasConceptScore W2058257936C2780827179 @default.
- W2058257936 hasConceptScore W2058257936C55493867 @default.
- W2058257936 hasConceptScore W2058257936C64894306 @default.
- W2058257936 hasConceptScore W2058257936C86803240 @default.
- W2058257936 hasIssue "03" @default.
- W2058257936 hasLocation W20582579361 @default.
- W2058257936 hasLocation W20582579362 @default.
- W2058257936 hasOpenAccess W2058257936 @default.
- W2058257936 hasPrimaryLocation W20582579361 @default.
- W2058257936 hasRelatedWork W1148413555 @default.
- W2058257936 hasRelatedWork W1989032179 @default.
- W2058257936 hasRelatedWork W2002370145 @default.
- W2058257936 hasRelatedWork W2007273060 @default.
- W2058257936 hasRelatedWork W2024549321 @default.