Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058278370> ?p ?o ?g. }
- W2058278370 endingPage "3219" @default.
- W2058278370 startingPage "3203" @default.
- W2058278370 abstract "Accurate landscape-scale maps of forests and associated disturbances are critical to augment studies on biodiversity, ecosystem services, and the carbon cycle, especially in terms of understanding how the spatial and temporal complexities of damage sustained from disturbances influence forest structure and function. Vegetation change tracker (VCT) is a highly automated algorithm that exploits the spectral-temporal properties of summer Landsat time series stacks (LTSSs) to generate spatially explicit maps of forest and recent forest disturbances. VCT performs well in contiguous forest landscapes with closed or nearly closed canopies, but often incorrectly classifies large patches of land as forest or forest disturbance in the complex and spatially heterogeneous environments that typify fragmented forest landscapes. We introduce an improved version of VCT (dubbed VCTw) that incorporates a nonforest mask derived from snow-covered winter Landsat time series stacks ( LTSSw) and compare it with VCT across nearly 25 million ha of land in the Lake Superior (Canada, USA) and Lake Michigan (USA) drainage basins. Accuracy assessments relying on 87 primary sampling units (PSUs) and 2640 secondary sampling units (SSUs) indicated that VCT performed with an overall accuracy of 86.3%. For persisting forest, the commission error was 14.7% and the omission error was 4.3%. Commission and omission errors for the two forest disturbance classes fluctuated around 50%. VCTw produced a statistically significant increase in overall accuracy to 91.2% and denoted about 1.115 million ha less forest (- .371 million ha disturbed and -0.744 million ha persisting). For persisting forest, the commission error decreased to 9.3% and the omission error was relatively unchanged at 5.0%. Commission errors decreased considerably to near 22% and omission errors remained near 50% in both forest disturbance classes. Dividing the assessments into three geographic strata demonstrated that the most dramatic improvement occurred across the southern half of the Lake Michigan basin, which contains a highly fragmented agricultural landscape and relatively sparse deciduous forest, although substantial improvements occurred in other geographic strata containing little agricultural land, abundant wetlands, and extensive coniferous forest. Unlike VCT, VCTw also generally corresponded well with field-based estimates of forest cover in each stratum. Snow-covered winter imagery appears to be a valuable resource for improving automated disturbance mapping accuracy. About 34% of the world's forests receive sufficient snowfall to cover the ground and are potentially suitable for VCTw; other season-based techniques may be worth pursuing for the remaining 66%." @default.
- W2058278370 created "2016-06-24" @default.
- W2058278370 creator A5000739434 @default.
- W2058278370 creator A5002852998 @default.
- W2058278370 creator A5005347997 @default.
- W2058278370 creator A5008634134 @default.
- W2058278370 creator A5012253260 @default.
- W2058278370 creator A5020624746 @default.
- W2058278370 creator A5062349921 @default.
- W2058278370 creator A5063686564 @default.
- W2058278370 creator A5067627676 @default.
- W2058278370 creator A5088514864 @default.
- W2058278370 creator A5090093591 @default.
- W2058278370 date "2011-12-01" @default.
- W2058278370 modified "2023-10-01" @default.
- W2058278370 title "Snow-covered Landsat time series stacks improve automated disturbance mapping accuracy in forested landscapes" @default.
- W2058278370 cites W1561480196 @default.
- W2058278370 cites W1589607095 @default.
- W2058278370 cites W1610015390 @default.
- W2058278370 cites W1965588353 @default.
- W2058278370 cites W1972406629 @default.
- W2058278370 cites W1972586783 @default.
- W2058278370 cites W1972733523 @default.
- W2058278370 cites W1974826343 @default.
- W2058278370 cites W1976344439 @default.
- W2058278370 cites W1979210946 @default.
- W2058278370 cites W1983018638 @default.
- W2058278370 cites W1983316600 @default.
- W2058278370 cites W1984436329 @default.
- W2058278370 cites W1985007599 @default.
- W2058278370 cites W2000768505 @default.
- W2058278370 cites W2026506924 @default.
- W2058278370 cites W2036417688 @default.
- W2058278370 cites W2036798369 @default.
- W2058278370 cites W2039918439 @default.
- W2058278370 cites W2045730031 @default.
- W2058278370 cites W2046788667 @default.
- W2058278370 cites W2047033130 @default.
- W2058278370 cites W2050043226 @default.
- W2058278370 cites W2050830693 @default.
- W2058278370 cites W2056036936 @default.
- W2058278370 cites W2061063031 @default.
- W2058278370 cites W2066633241 @default.
- W2058278370 cites W2076577718 @default.
- W2058278370 cites W2096037942 @default.
- W2058278370 cites W2098695466 @default.
- W2058278370 cites W2104100648 @default.
- W2058278370 cites W2109458835 @default.
- W2058278370 cites W2114828048 @default.
- W2058278370 cites W2115981223 @default.
- W2058278370 cites W2118364838 @default.
- W2058278370 cites W2126423595 @default.
- W2058278370 cites W2127813926 @default.
- W2058278370 cites W2133557877 @default.
- W2058278370 cites W2134814598 @default.
- W2058278370 cites W2137341666 @default.
- W2058278370 cites W2139068270 @default.
- W2058278370 cites W2140908571 @default.
- W2058278370 cites W2149290009 @default.
- W2058278370 cites W2156917518 @default.
- W2058278370 cites W2160502744 @default.
- W2058278370 cites W2161336494 @default.
- W2058278370 cites W2161857414 @default.
- W2058278370 cites W2161980091 @default.
- W2058278370 cites W2162348455 @default.
- W2058278370 cites W2163241395 @default.
- W2058278370 cites W2164453447 @default.
- W2058278370 cites W2165577558 @default.
- W2058278370 cites W2167110374 @default.
- W2058278370 cites W2172398424 @default.
- W2058278370 cites W2180289817 @default.
- W2058278370 cites W2180682969 @default.
- W2058278370 cites W2272473773 @default.
- W2058278370 cites W2746485780 @default.
- W2058278370 doi "https://doi.org/10.1016/j.rse.2011.07.005" @default.
- W2058278370 hasPublicationYear "2011" @default.
- W2058278370 type Work @default.
- W2058278370 sameAs 2058278370 @default.
- W2058278370 citedByCount "34" @default.
- W2058278370 countsByYear W20582783702012 @default.
- W2058278370 countsByYear W20582783702013 @default.
- W2058278370 countsByYear W20582783702014 @default.
- W2058278370 countsByYear W20582783702015 @default.
- W2058278370 countsByYear W20582783702016 @default.
- W2058278370 countsByYear W20582783702017 @default.
- W2058278370 countsByYear W20582783702018 @default.
- W2058278370 countsByYear W20582783702020 @default.
- W2058278370 countsByYear W20582783702021 @default.
- W2058278370 countsByYear W20582783702023 @default.
- W2058278370 crossrefType "journal-article" @default.
- W2058278370 hasAuthorship W2058278370A5000739434 @default.
- W2058278370 hasAuthorship W2058278370A5002852998 @default.
- W2058278370 hasAuthorship W2058278370A5005347997 @default.
- W2058278370 hasAuthorship W2058278370A5008634134 @default.
- W2058278370 hasAuthorship W2058278370A5012253260 @default.
- W2058278370 hasAuthorship W2058278370A5020624746 @default.
- W2058278370 hasAuthorship W2058278370A5062349921 @default.
- W2058278370 hasAuthorship W2058278370A5063686564 @default.