Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058529145> ?p ?o ?g. }
- W2058529145 endingPage "4289" @default.
- W2058529145 startingPage "4268" @default.
- W2058529145 abstract "The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST). However, calibration notices issued by the United States Geological Survey (USGS) indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS) Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW) algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature) were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC) algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial variation of the extremely hot weather, a frequently-occurring phenomenon of an abnormal heat flux process in summer along the Yangtze River Basin, had been thoroughly analyzed. This successful application suggested that the IMW algorithm presented in the study could be used as an efficient method for LST retrieval from the Landsat 8 TIRS Band 10 data." @default.
- W2058529145 created "2016-06-24" @default.
- W2058529145 creator A5012782128 @default.
- W2058529145 creator A5032718083 @default.
- W2058529145 creator A5035738651 @default.
- W2058529145 creator A5046118767 @default.
- W2058529145 creator A5086529957 @default.
- W2058529145 creator A5087431334 @default.
- W2058529145 date "2015-04-10" @default.
- W2058529145 modified "2023-10-17" @default.
- W2058529145 title "An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data" @default.
- W2058529145 cites W1965737830 @default.
- W2058529145 cites W1966383444 @default.
- W2058529145 cites W1967395374 @default.
- W2058529145 cites W1977618503 @default.
- W2058529145 cites W1983002255 @default.
- W2058529145 cites W1985137674 @default.
- W2058529145 cites W1985367546 @default.
- W2058529145 cites W1988512587 @default.
- W2058529145 cites W1997058127 @default.
- W2058529145 cites W2001564322 @default.
- W2058529145 cites W2003627845 @default.
- W2058529145 cites W2004421671 @default.
- W2058529145 cites W2006149637 @default.
- W2058529145 cites W2012147369 @default.
- W2058529145 cites W2021720319 @default.
- W2058529145 cites W2026337749 @default.
- W2058529145 cites W2027531202 @default.
- W2058529145 cites W2032165913 @default.
- W2058529145 cites W2045635791 @default.
- W2058529145 cites W2051798177 @default.
- W2058529145 cites W2055801775 @default.
- W2058529145 cites W2057390839 @default.
- W2058529145 cites W2061003790 @default.
- W2058529145 cites W2067542652 @default.
- W2058529145 cites W2082378401 @default.
- W2058529145 cites W2082679430 @default.
- W2058529145 cites W2084160216 @default.
- W2058529145 cites W2092918792 @default.
- W2058529145 cites W2103541076 @default.
- W2058529145 cites W2112662635 @default.
- W2058529145 cites W2113034257 @default.
- W2058529145 cites W2116370245 @default.
- W2058529145 cites W2118079714 @default.
- W2058529145 cites W2121734859 @default.
- W2058529145 cites W2126271593 @default.
- W2058529145 cites W2127437631 @default.
- W2058529145 cites W2155897273 @default.
- W2058529145 cites W2156049446 @default.
- W2058529145 cites W2162906470 @default.
- W2058529145 cites W2164330309 @default.
- W2058529145 doi "https://doi.org/10.3390/rs70404268" @default.
- W2058529145 hasPublicationYear "2015" @default.
- W2058529145 type Work @default.
- W2058529145 sameAs 2058529145 @default.
- W2058529145 citedByCount "261" @default.
- W2058529145 countsByYear W20585291452015 @default.
- W2058529145 countsByYear W20585291452016 @default.
- W2058529145 countsByYear W20585291452017 @default.
- W2058529145 countsByYear W20585291452018 @default.
- W2058529145 countsByYear W20585291452019 @default.
- W2058529145 countsByYear W20585291452020 @default.
- W2058529145 countsByYear W20585291452021 @default.
- W2058529145 countsByYear W20585291452022 @default.
- W2058529145 countsByYear W20585291452023 @default.
- W2058529145 crossrefType "journal-article" @default.
- W2058529145 hasAuthorship W2058529145A5012782128 @default.
- W2058529145 hasAuthorship W2058529145A5032718083 @default.
- W2058529145 hasAuthorship W2058529145A5035738651 @default.
- W2058529145 hasAuthorship W2058529145A5046118767 @default.
- W2058529145 hasAuthorship W2058529145A5086529957 @default.
- W2058529145 hasAuthorship W2058529145A5087431334 @default.
- W2058529145 hasBestOaLocation W20585291451 @default.
- W2058529145 hasConcept C105795698 @default.
- W2058529145 hasConcept C11413529 @default.
- W2058529145 hasConcept C120665830 @default.
- W2058529145 hasConcept C121332964 @default.
- W2058529145 hasConcept C127313418 @default.
- W2058529145 hasConcept C1276947 @default.
- W2058529145 hasConcept C139945424 @default.
- W2058529145 hasConcept C153294291 @default.
- W2058529145 hasConcept C158355884 @default.
- W2058529145 hasConcept C163651212 @default.
- W2058529145 hasConcept C19269812 @default.
- W2058529145 hasConcept C2778329001 @default.
- W2058529145 hasConcept C2984335091 @default.
- W2058529145 hasConcept C33923547 @default.
- W2058529145 hasConcept C39432304 @default.
- W2058529145 hasConcept C41008148 @default.
- W2058529145 hasConcept C51295201 @default.
- W2058529145 hasConcept C62649853 @default.
- W2058529145 hasConceptScore W2058529145C105795698 @default.
- W2058529145 hasConceptScore W2058529145C11413529 @default.
- W2058529145 hasConceptScore W2058529145C120665830 @default.
- W2058529145 hasConceptScore W2058529145C121332964 @default.
- W2058529145 hasConceptScore W2058529145C127313418 @default.
- W2058529145 hasConceptScore W2058529145C1276947 @default.
- W2058529145 hasConceptScore W2058529145C139945424 @default.