Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058591750> ?p ?o ?g. }
- W2058591750 endingPage "280" @default.
- W2058591750 startingPage "264" @default.
- W2058591750 abstract "Software companies spend over 45 percent of cost in dealing with software bugs. An inevitable step of fixing bugs is bug triage, which aims to correctly assign a developer to a new bug. To decrease the time cost in manual work, text classification techniques are applied to conduct automatic bug triage. In this paper, we address the problem of data reduction for bug triage, i.e., how to reduce the scale and improve the quality of bug data. We combine instance selection with feature selection to simultaneously reduce data scale on the bug dimension and the word dimension. To determine the order of applying instance selection and feature selection, we extract attributes from historical bug data sets and build a predictive model for a new bug data set. We empirically investigate the performance of data reduction on totally 600,000 bug reports of two large open source projects, namely Eclipse and Mozilla. The results show that our data reduction can effectively reduce the data scale and improve the accuracy of bug triage. Ourwork provides an approach to leveraging techniques on data processing to form reduced and high-quality bug data in software development and maintenance." @default.
- W2058591750 created "2016-06-24" @default.
- W2058591750 creator A5002119636 @default.
- W2058591750 creator A5002360773 @default.
- W2058591750 creator A5005221755 @default.
- W2058591750 creator A5041848845 @default.
- W2058591750 creator A5045140275 @default.
- W2058591750 creator A5052003105 @default.
- W2058591750 creator A5080738591 @default.
- W2058591750 date "2015-01-01" @default.
- W2058591750 modified "2023-10-15" @default.
- W2058591750 title "Towards Effective Bug Triage with Software Data Reduction Techniques" @default.
- W2058591750 cites W1500895378 @default.
- W2058591750 cites W1968451194 @default.
- W2058591750 cites W1982937949 @default.
- W2058591750 cites W2005406219 @default.
- W2058591750 cites W2011459220 @default.
- W2058591750 cites W2011762057 @default.
- W2058591750 cites W2014826808 @default.
- W2058591750 cites W2019797202 @default.
- W2058591750 cites W2021732807 @default.
- W2058591750 cites W2025568499 @default.
- W2058591750 cites W2029853454 @default.
- W2058591750 cites W2038464048 @default.
- W2058591750 cites W2040241219 @default.
- W2058591750 cites W2050496630 @default.
- W2058591750 cites W2056168656 @default.
- W2058591750 cites W2058928127 @default.
- W2058591750 cites W2078995428 @default.
- W2058591750 cites W2079317829 @default.
- W2058591750 cites W2090043049 @default.
- W2058591750 cites W2090094826 @default.
- W2058591750 cites W2096742462 @default.
- W2058591750 cites W2102193394 @default.
- W2058591750 cites W2107142491 @default.
- W2058591750 cites W2110307645 @default.
- W2058591750 cites W2113351233 @default.
- W2058591750 cites W2114535528 @default.
- W2058591750 cites W2120787072 @default.
- W2058591750 cites W2122496402 @default.
- W2058591750 cites W2124537254 @default.
- W2058591750 cites W2126226055 @default.
- W2058591750 cites W2136213879 @default.
- W2058591750 cites W2136579066 @default.
- W2058591750 cites W2142686927 @default.
- W2058591750 cites W2145793758 @default.
- W2058591750 cites W2148442785 @default.
- W2058591750 cites W2150577300 @default.
- W2058591750 cites W2156833313 @default.
- W2058591750 cites W2157067562 @default.
- W2058591750 cites W2158724449 @default.
- W2058591750 cites W2164577291 @default.
- W2058591750 cites W2165409713 @default.
- W2058591750 cites W2167630669 @default.
- W2058591750 cites W2313056976 @default.
- W2058591750 cites W2622953742 @default.
- W2058591750 cites W3142566747 @default.
- W2058591750 cites W4206588522 @default.
- W2058591750 cites W4235786516 @default.
- W2058591750 cites W4244536841 @default.
- W2058591750 cites W49056268 @default.
- W2058591750 doi "https://doi.org/10.1109/tkde.2014.2324590" @default.
- W2058591750 hasPublicationYear "2015" @default.
- W2058591750 type Work @default.
- W2058591750 sameAs 2058591750 @default.
- W2058591750 citedByCount "108" @default.
- W2058591750 countsByYear W20585917502015 @default.
- W2058591750 countsByYear W20585917502016 @default.
- W2058591750 countsByYear W20585917502017 @default.
- W2058591750 countsByYear W20585917502018 @default.
- W2058591750 countsByYear W20585917502019 @default.
- W2058591750 countsByYear W20585917502020 @default.
- W2058591750 countsByYear W20585917502021 @default.
- W2058591750 countsByYear W20585917502022 @default.
- W2058591750 countsByYear W20585917502023 @default.
- W2058591750 crossrefType "journal-article" @default.
- W2058591750 hasAuthorship W2058591750A5002119636 @default.
- W2058591750 hasAuthorship W2058591750A5002360773 @default.
- W2058591750 hasAuthorship W2058591750A5005221755 @default.
- W2058591750 hasAuthorship W2058591750A5041848845 @default.
- W2058591750 hasAuthorship W2058591750A5045140275 @default.
- W2058591750 hasAuthorship W2058591750A5052003105 @default.
- W2058591750 hasAuthorship W2058591750A5080738591 @default.
- W2058591750 hasBestOaLocation W20585917502 @default.
- W2058591750 hasConcept C1009929 @default.
- W2058591750 hasConcept C117447612 @default.
- W2058591750 hasConcept C119857082 @default.
- W2058591750 hasConcept C124101348 @default.
- W2058591750 hasConcept C148483581 @default.
- W2058591750 hasConcept C191727507 @default.
- W2058591750 hasConcept C194828623 @default.
- W2058591750 hasConcept C199360897 @default.
- W2058591750 hasConcept C2777120189 @default.
- W2058591750 hasConcept C2777904410 @default.
- W2058591750 hasConcept C41008148 @default.
- W2058591750 hasConcept C529173508 @default.
- W2058591750 hasConcept C71924100 @default.
- W2058591750 hasConceptScore W2058591750C1009929 @default.