Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058598651> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2058598651 endingPage "1002" @default.
- W2058598651 startingPage "1002" @default.
- W2058598651 abstract "LETTERS TO THE EDITORLast Word on Point:Counterpoint: Exercise-induced intrapulmonary shunting is imaginary vs. realSusan R. Hopkins, I. Mark Olfert, and Peter D. WagnerSusan R. Hopkins, I. Mark Olfert, and Peter D. WagnerPublished Online:01 Sep 2009https://doi.org/10.1152/japplphysiol.00652.2009MoreSectionsPDF (30 KB)Download PDF ToolsExport citationAdd to favoritesGet permissionsTrack citations ShareShare onFacebookTwitterLinkedInEmailWeChat to the editor: We completely agree with the letter writers (3) that it is important to apply quantitative techniques for the measurement of intrapulmonary shunt before drawing conclusions. Both MIGET and the 100% oxygen technique are quantitative and have consistently shown insignificant intrapulmonary shunting in most normal subjects (2, 6). Quantification of these shunts with 99mTcMAA, recently attempted (4), is problematic. This is because the 99mTcMAA technique relies heavily on assumptions about uniformity of particle size, adherence of the 99mTc to the particle, and assumptions about attenuation of counts in the face of changing respiratory muscle blood flow and pulmonary blood volume postexercise. All of these issues will bias the measurements in the direction of overestimating shunt. Additionally, 99mTcMAA has been validated only for large shunts (i.e., orders of magnitude greater than discussed here) and only against the 100% oxygen technique, which our colleagues have argued recently is invalid for detection of their arteriovenous pathways (4).Our colleagues claim that because MIGET cannot distinguish right-to-left cardiac shunts (such as a patent foramen ovale) from intrapulmonary shunts that this somehow invalidates MIGET. All that this means is that gas exchange techniques cannot identify the physical site of a shunt, not that they cannot quantify it when present. Thus the values in Table 1 (2) are a “worst case scenario” for intrapulmonary shunt, as they may also contain contributions from any intracardiac shunt.Precapillary gas exchange is suggested as a reason why MIGET consistently measures shunt as a miniscule contribution to the AaDO2. If a vessel exchanges gas, it is by definition, NOT a shunt vessel, although diffusion-perfusion disequilibrium is possible. The effect of a shunt is to retain gases of all solubilities (not just SF6), including those that have solubilities bracketing the respiratory gases. Furthermore, O2 also exchanges upstream of capillaries (1), so this does not explain why these techniques measure a tiny shunt and associated effect on the AaDO2.For intrapulmonary shunts to be anything but trivially important for gas exchange one has to believe that established quantitative techniques for measurement of intrapulmonary shunting are invalid: the 100% oxygen technique because of some previously undiscovered vasoconstrictive effect of oxygen on selected parts of the pulmonary circulation (4), and MIGET because of some mysterious gas exchange properties of these “shunt” vessels acting on some of the inert gases, but not respiratory gases or inert gases with similar solubilities. Finally, if many normal individuals “shunt” during exercise, as our colleagues assert, and “shunts” are potentially important determinants of cerebrovascular pathology (3), it is surprising that that athletes the world over are not experiencing cryptogenic stroke, as they exercise daily for several hours. This would appear not to be the case.Until our colleagues can QUANTIFY flow through dilated channels using appropriately validated techniques and until those channels can be shown to have ABNORMAL O2 uptake, they have nothing more than an hypothesis. Until both standards have been met, microbubble transmission should not be called a shunt and a role in gas exchange should not be inferred.REFERENCES1 Conhaim RL, Staub NC. Reflection spectrophotometric measurement of O2 uptake in pulmonary arterioles of cats. J Appl Physiol 48: 848–856, 1980.Link | ISI | Google Scholar2 Hopkins SR, Olfert IM, Wagner PD. Point: Exercise-induced intrapulmonary shunting is imaginary. J Appl Physiol; doi:10.1152/japplphysiol.91489.2008.Link | ISI | Google Scholar3 Jones RL, Sheel AW, Naeije R, Faoro V, Hughes JM, Bates ML. Comments on Point:Counterpoint: Exercise-induced itrapulmonary shunting is imaginary vs. real. J Appl Physiol; doi:10.1152/japplphysiol.00660.2009.Link | ISI | Google Scholar4 Lovering AT, Haverkamp HC, Romer LM, Hokanson JS, Eldridge MW. Transpulmonary passage of 99mTc macroaggregated albumin in healthy humans at rest and during maximal exercise. J Appl Physiol 106: 1986–1992, 2009.Link | ISI | Google Scholar5 Lovering AT, Stickland MK, Amann M, Murphy JC, O'Brien MJ, Hokanson JS, Eldridge MW. Hyperoxia prevents exercise-induced intrapulmonary arteriovenous shunt in healthy humans. J Physiol 586: 4559–4565, 2008.Crossref | PubMed | ISI | Google Scholar6 Vogiatzis I, Zakynthinos S, Boushel R, Athanasopoulos D, Guenette JA, Wagner H, Roussos C, Wagner PD. The contribution of intrapulmonary shunts to the alveolar-to-arterial oxygen difference during exercise is very small. J Physiol 586: 2381–2391, 2008.Crossref | PubMed | ISI | Google ScholarAUTHOR NOTESAddress for reprint requests and other correspondence: S. R. Hopkins, Univ. of California, San Diego, Physiology 0623A, 9500 Gilman Dr., La Jolla, CA 92093 (e-mail: [email protected]) Download PDF Previous Back to Top Next FiguresReferencesRelatedInformationCited ByPrecapillary pulmonary gas exchange is similar for oxygen and inert gases25 August 2019 | The Journal of Physiology, Vol. 597, No. 22Intra‐pulmonary arteriovenous anastomoses and pulmonary gas exchange: evaluation by microspheres, contrast echocardiography and inert gas elimination26 September 2019 | The Journal of Physiology, Vol. 597, No. 22Review of the MIGET Literature3 December 2017Dopamine receptor blockade improves pulmonary gas exchange but decreases exercise performance in healthy humans8 June 2015 | The Journal of Physiology, Vol. 593, No. 14Clinical Consideration for Techniques to Detect and Quantify Blood Flow through Intrapulmonary Arteriovenous Anastomoses: Lessons from Physiological Studies19 February 2015 | Echocardiography, Vol. 32Transit of micro-bubbles through the pulmonary circulation of Thoroughbred horses during exerciseResearch in Veterinary Science, Vol. 95, No. 2Pulmonary Gas Exchange and Acid‐Base Balance During Exercise1 April 2013Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals23 July 2012 | The Journal of Physiology, Vol. 590, No. 17The effects of dobutamine and dopamine on intrapulmonary shunt and gas exchange in healthy humansTracey L. Bryan, Sean van Diepen, Mohit Bhutani, Miriam Shanks, Robert C. Welsh, and Michael K. Stickland15 August 2012 | Journal of Applied Physiology, Vol. 113, No. 4Pulmonary pathways and mechanisms regulating transpulmonary shunting into the general circulation: An updateInjury, Vol. 41 More from this issue > Volume 107Issue 3September 2009Pages 1002-1002 Copyright & PermissionsCopyright © 2009 the American Physiological Societyhttps://doi.org/10.1152/japplphysiol.00652.2009PubMed19713436History Published online 1 September 2009 Published in print 1 September 2009 Metrics" @default.
- W2058598651 created "2016-06-24" @default.
- W2058598651 creator A5018377081 @default.
- W2058598651 creator A5020777322 @default.
- W2058598651 creator A5032706765 @default.
- W2058598651 date "2009-09-01" @default.
- W2058598651 modified "2023-10-15" @default.
- W2058598651 title "Last Word on Point:Counterpoint: Exercise-induced intrapulmonary shunting is imaginary vs. real" @default.
- W2058598651 cites W1520923485 @default.
- W2058598651 cites W1981963002 @default.
- W2058598651 cites W2107239113 @default.
- W2058598651 cites W2134021027 @default.
- W2058598651 cites W2172146545 @default.
- W2058598651 cites W2221322856 @default.
- W2058598651 cites W2394563029 @default.
- W2058598651 doi "https://doi.org/10.1152/japplphysiol.00652.2009" @default.
- W2058598651 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4073924" @default.
- W2058598651 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19713436" @default.
- W2058598651 hasPublicationYear "2009" @default.
- W2058598651 type Work @default.
- W2058598651 sameAs 2058598651 @default.
- W2058598651 citedByCount "12" @default.
- W2058598651 countsByYear W20585986512012 @default.
- W2058598651 countsByYear W20585986512013 @default.
- W2058598651 countsByYear W20585986512015 @default.
- W2058598651 countsByYear W20585986512017 @default.
- W2058598651 countsByYear W20585986512019 @default.
- W2058598651 crossrefType "journal-article" @default.
- W2058598651 hasAuthorship W2058598651A5018377081 @default.
- W2058598651 hasAuthorship W2058598651A5020777322 @default.
- W2058598651 hasAuthorship W2058598651A5032706765 @default.
- W2058598651 hasBestOaLocation W20585986512 @default.
- W2058598651 hasConcept C11171543 @default.
- W2058598651 hasConcept C12582419 @default.
- W2058598651 hasConcept C126322002 @default.
- W2058598651 hasConcept C135068731 @default.
- W2058598651 hasConcept C138885662 @default.
- W2058598651 hasConcept C15744967 @default.
- W2058598651 hasConcept C164705383 @default.
- W2058598651 hasConcept C19417346 @default.
- W2058598651 hasConcept C197328160 @default.
- W2058598651 hasConcept C2524010 @default.
- W2058598651 hasConcept C28719098 @default.
- W2058598651 hasConcept C33923547 @default.
- W2058598651 hasConcept C41895202 @default.
- W2058598651 hasConcept C71924100 @default.
- W2058598651 hasConcept C90805587 @default.
- W2058598651 hasConceptScore W2058598651C11171543 @default.
- W2058598651 hasConceptScore W2058598651C12582419 @default.
- W2058598651 hasConceptScore W2058598651C126322002 @default.
- W2058598651 hasConceptScore W2058598651C135068731 @default.
- W2058598651 hasConceptScore W2058598651C138885662 @default.
- W2058598651 hasConceptScore W2058598651C15744967 @default.
- W2058598651 hasConceptScore W2058598651C164705383 @default.
- W2058598651 hasConceptScore W2058598651C19417346 @default.
- W2058598651 hasConceptScore W2058598651C197328160 @default.
- W2058598651 hasConceptScore W2058598651C2524010 @default.
- W2058598651 hasConceptScore W2058598651C28719098 @default.
- W2058598651 hasConceptScore W2058598651C33923547 @default.
- W2058598651 hasConceptScore W2058598651C41895202 @default.
- W2058598651 hasConceptScore W2058598651C71924100 @default.
- W2058598651 hasConceptScore W2058598651C90805587 @default.
- W2058598651 hasIssue "3" @default.
- W2058598651 hasLocation W20585986511 @default.
- W2058598651 hasLocation W20585986512 @default.
- W2058598651 hasLocation W20585986513 @default.
- W2058598651 hasLocation W20585986514 @default.
- W2058598651 hasOpenAccess W2058598651 @default.
- W2058598651 hasPrimaryLocation W20585986511 @default.
- W2058598651 hasRelatedWork W2218663594 @default.
- W2058598651 hasRelatedWork W2359726933 @default.
- W2058598651 hasRelatedWork W2380613003 @default.
- W2058598651 hasRelatedWork W2797380294 @default.
- W2058598651 hasRelatedWork W2910555480 @default.
- W2058598651 hasRelatedWork W3167623406 @default.
- W2058598651 hasRelatedWork W3186369155 @default.
- W2058598651 hasRelatedWork W3214852386 @default.
- W2058598651 hasRelatedWork W4295951569 @default.
- W2058598651 hasRelatedWork W650536371 @default.
- W2058598651 hasVolume "107" @default.
- W2058598651 isParatext "false" @default.
- W2058598651 isRetracted "false" @default.
- W2058598651 magId "2058598651" @default.
- W2058598651 workType "article" @default.