Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058676961> ?p ?o ?g. }
- W2058676961 endingPage "202" @default.
- W2058676961 startingPage "182" @default.
- W2058676961 abstract "We present a Local Discontinuous Galerkin (LDG) method for solving non-Newtonian incompressible flow problems. The problems are modeled by p-type Navier–Stokes equations, the extra stress tensor follows a p-power rule (p-NS). The aim of this paper is to present an efficient way for discretizing the governing equations by an LDG method, choosing both equal and mixed order local polynomial space for velocity and pressure. The velocity gradient is introduced as an auxiliary variable and the p-NS system is decomposed into a first order system including the projection of the nonlinear stress tensor components to the local discontinuous space. Every equation resulting from the splitting of the extra stress tensor is discretized under the DG element by element technique. In the divergence constraint equation, an artificial compressibility term (time derivative of the pressure with a small parameter) is added and the first order terms are expressed in a divergence form, and are discretized by utilizing the Lax–Friedrichs numerical fluxes. An upwind wave analysis is applied on the outflow boundary for constructing artificial outflow boundary conditions. For the time discretization, s-stage Diagonally Implicit Runge–Kutta schemes are applied. Numerical experiments on problems with known exact solutions are performed for verifying the expected convergence rates of the method. Benchmark problems are considered in order to check the performance of the method for solving flow problems described by p-NS systems." @default.
- W2058676961 created "2016-06-24" @default.
- W2058676961 creator A5027944157 @default.
- W2058676961 creator A5035392321 @default.
- W2058676961 creator A5042196756 @default.
- W2058676961 date "2014-08-01" @default.
- W2058676961 modified "2023-09-25" @default.
- W2058676961 title "Local discontinuous Galerkin numerical solutions of non-Newtonian incompressible flows modeled by p-Navier–Stokes equations" @default.
- W2058676961 cites W1967863240 @default.
- W2058676961 cites W1967908619 @default.
- W2058676961 cites W1972419338 @default.
- W2058676961 cites W1976136035 @default.
- W2058676961 cites W1982026353 @default.
- W2058676961 cites W1998894128 @default.
- W2058676961 cites W2008192231 @default.
- W2058676961 cites W2014339952 @default.
- W2058676961 cites W2015584700 @default.
- W2058676961 cites W2023907958 @default.
- W2058676961 cites W2025976269 @default.
- W2058676961 cites W2027456895 @default.
- W2058676961 cites W2030810863 @default.
- W2058676961 cites W2057256219 @default.
- W2058676961 cites W2057786096 @default.
- W2058676961 cites W2068929590 @default.
- W2058676961 cites W2075368899 @default.
- W2058676961 cites W2083453309 @default.
- W2058676961 cites W2091486840 @default.
- W2058676961 cites W2096894484 @default.
- W2058676961 cites W2108949837 @default.
- W2058676961 cites W2110453348 @default.
- W2058676961 cites W2111184525 @default.
- W2058676961 cites W2129289120 @default.
- W2058676961 cites W2130477114 @default.
- W2058676961 cites W2131543062 @default.
- W2058676961 cites W2147104274 @default.
- W2058676961 cites W2160716572 @default.
- W2058676961 cites W2164216526 @default.
- W2058676961 cites W4252060206 @default.
- W2058676961 cites W4252350806 @default.
- W2058676961 cites W2147487112 @default.
- W2058676961 doi "https://doi.org/10.1016/j.jcp.2014.03.045" @default.
- W2058676961 hasPublicationYear "2014" @default.
- W2058676961 type Work @default.
- W2058676961 sameAs 2058676961 @default.
- W2058676961 citedByCount "9" @default.
- W2058676961 countsByYear W20586769612014 @default.
- W2058676961 countsByYear W20586769612016 @default.
- W2058676961 countsByYear W20586769612017 @default.
- W2058676961 countsByYear W20586769612018 @default.
- W2058676961 countsByYear W20586769612021 @default.
- W2058676961 countsByYear W20586769612022 @default.
- W2058676961 countsByYear W20586769612023 @default.
- W2058676961 crossrefType "journal-article" @default.
- W2058676961 hasAuthorship W2058676961A5027944157 @default.
- W2058676961 hasAuthorship W2058676961A5035392321 @default.
- W2058676961 hasAuthorship W2058676961A5042196756 @default.
- W2058676961 hasConcept C121332964 @default.
- W2058676961 hasConcept C134306372 @default.
- W2058676961 hasConcept C135628077 @default.
- W2058676961 hasConcept C171338203 @default.
- W2058676961 hasConcept C182310444 @default.
- W2058676961 hasConcept C2781278361 @default.
- W2058676961 hasConcept C28826006 @default.
- W2058676961 hasConcept C33923547 @default.
- W2058676961 hasConcept C48941259 @default.
- W2058676961 hasConcept C57879066 @default.
- W2058676961 hasConcept C73000952 @default.
- W2058676961 hasConcept C84655787 @default.
- W2058676961 hasConcept C92244383 @default.
- W2058676961 hasConcept C97355855 @default.
- W2058676961 hasConceptScore W2058676961C121332964 @default.
- W2058676961 hasConceptScore W2058676961C134306372 @default.
- W2058676961 hasConceptScore W2058676961C135628077 @default.
- W2058676961 hasConceptScore W2058676961C171338203 @default.
- W2058676961 hasConceptScore W2058676961C182310444 @default.
- W2058676961 hasConceptScore W2058676961C2781278361 @default.
- W2058676961 hasConceptScore W2058676961C28826006 @default.
- W2058676961 hasConceptScore W2058676961C33923547 @default.
- W2058676961 hasConceptScore W2058676961C48941259 @default.
- W2058676961 hasConceptScore W2058676961C57879066 @default.
- W2058676961 hasConceptScore W2058676961C73000952 @default.
- W2058676961 hasConceptScore W2058676961C84655787 @default.
- W2058676961 hasConceptScore W2058676961C92244383 @default.
- W2058676961 hasConceptScore W2058676961C97355855 @default.
- W2058676961 hasFunder F4320320879 @default.
- W2058676961 hasLocation W20586769611 @default.
- W2058676961 hasOpenAccess W2058676961 @default.
- W2058676961 hasPrimaryLocation W20586769611 @default.
- W2058676961 hasRelatedWork W1973253908 @default.
- W2058676961 hasRelatedWork W2057106870 @default.
- W2058676961 hasRelatedWork W2063054640 @default.
- W2058676961 hasRelatedWork W2080994790 @default.
- W2058676961 hasRelatedWork W2122608714 @default.
- W2058676961 hasRelatedWork W2324487000 @default.
- W2058676961 hasRelatedWork W3081675730 @default.
- W2058676961 hasRelatedWork W4223973763 @default.
- W2058676961 hasRelatedWork W4287186133 @default.
- W2058676961 hasRelatedWork W2184613118 @default.