Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058875688> ?p ?o ?g. }
- W2058875688 endingPage "742" @default.
- W2058875688 startingPage "707" @default.
- W2058875688 abstract "In [41], it was shown that the following singularly perturbed Dirichlet problem e 2 Δu - u + |u| p- u = 0, in Ω, u = 0 on ∂Ω has a nodal solution u e which has the least energy among all nodal solutions. Moreover, it is shown that u e has exactly one local maximum point P e 1 with a positive value and one local minimum point P e 2 with a negative value, and as e → 0, formula math where φ(P 1 , P 2 ) = min(}P 1 - P 2 }/2,d(P 1 , ∂Ω ), d(P 2 , ∂Ω)). The following question naturally arises: where is the nodal surface {u e (x) = 0}? In this paper, we give an answer in the case of the unit ball Ω = B 1 (0). In particular, we show that for e sufficiently small, Pf, P e 2 and the origin must lie on a line. Without loss of generality, we may assume that this line is the x 1 -axis. Then u e must be even in Xj, j = 2,..., N, and odd in x 1 . As a consequence, we show that {u e (x) = 0} = {x ∈ B 1 (0) x 1 = 0}. Our proof is divided into two steps: first, by using the method of moving planes, we show that P e 1 , P e 2 and the origin must lie on the x 1 -axis and u e must be even in Xj, j = 2,..., N. Then, using the Liapunov-Schmidt reduction method, we prove the uniqueness of u e (which implies the odd symmetry of u e in x 1 ). Similar results are also proved for the problem with Neumann boundary conditions." @default.
- W2058875688 created "2016-06-24" @default.
- W2058875688 creator A5057351789 @default.
- W2058875688 creator A5088445583 @default.
- W2058875688 date "2005-01-01" @default.
- W2058875688 modified "2023-09-26" @default.
- W2058875688 title "Symmetry of nodal solutions for singularly perturbed elliptic problems on a ball" @default.
- W2058875688 cites W1483681777 @default.
- W2058875688 cites W1505542423 @default.
- W2058875688 cites W1579246209 @default.
- W2058875688 cites W1796285435 @default.
- W2058875688 cites W1822890267 @default.
- W2058875688 cites W193938403 @default.
- W2058875688 cites W1965566485 @default.
- W2058875688 cites W1967793826 @default.
- W2058875688 cites W1973809140 @default.
- W2058875688 cites W1977212986 @default.
- W2058875688 cites W1982357817 @default.
- W2058875688 cites W1992349462 @default.
- W2058875688 cites W1996322866 @default.
- W2058875688 cites W2003438016 @default.
- W2058875688 cites W2005022395 @default.
- W2058875688 cites W2007066944 @default.
- W2058875688 cites W2007388880 @default.
- W2058875688 cites W2008177756 @default.
- W2058875688 cites W2012006729 @default.
- W2058875688 cites W2012110405 @default.
- W2058875688 cites W2021833235 @default.
- W2058875688 cites W2023868857 @default.
- W2058875688 cites W2029913682 @default.
- W2058875688 cites W2030419636 @default.
- W2058875688 cites W2034145387 @default.
- W2058875688 cites W2036566081 @default.
- W2058875688 cites W2042494645 @default.
- W2058875688 cites W2044380463 @default.
- W2058875688 cites W2054671813 @default.
- W2058875688 cites W2069677289 @default.
- W2058875688 cites W2075018793 @default.
- W2058875688 cites W2079275322 @default.
- W2058875688 cites W2082206647 @default.
- W2058875688 cites W2089840306 @default.
- W2058875688 cites W2091344274 @default.
- W2058875688 cites W2092191962 @default.
- W2058875688 cites W2113257692 @default.
- W2058875688 cites W2121305176 @default.
- W2058875688 cites W2156946152 @default.
- W2058875688 cites W2225790440 @default.
- W2058875688 cites W2248487054 @default.
- W2058875688 cites W2294834484 @default.
- W2058875688 cites W2596287866 @default.
- W2058875688 cites W2738414660 @default.
- W2058875688 cites W3217362339 @default.
- W2058875688 cites W39810302 @default.
- W2058875688 cites W2520024398 @default.
- W2058875688 doi "https://doi.org/10.1512/iumj.2005.54.2546" @default.
- W2058875688 hasPublicationYear "2005" @default.
- W2058875688 type Work @default.
- W2058875688 sameAs 2058875688 @default.
- W2058875688 citedByCount "15" @default.
- W2058875688 countsByYear W20588756882012 @default.
- W2058875688 countsByYear W20588756882014 @default.
- W2058875688 countsByYear W20588756882018 @default.
- W2058875688 countsByYear W20588756882020 @default.
- W2058875688 countsByYear W20588756882022 @default.
- W2058875688 crossrefType "journal-article" @default.
- W2058875688 hasAuthorship W2058875688A5057351789 @default.
- W2058875688 hasAuthorship W2058875688A5088445583 @default.
- W2058875688 hasBestOaLocation W20588756882 @default.
- W2058875688 hasConcept C105702510 @default.
- W2058875688 hasConcept C122041747 @default.
- W2058875688 hasConcept C134306372 @default.
- W2058875688 hasConcept C165160513 @default.
- W2058875688 hasConcept C2524010 @default.
- W2058875688 hasConcept C2779886137 @default.
- W2058875688 hasConcept C33923547 @default.
- W2058875688 hasConcept C71924100 @default.
- W2058875688 hasConcept C83330619 @default.
- W2058875688 hasConceptScore W2058875688C105702510 @default.
- W2058875688 hasConceptScore W2058875688C122041747 @default.
- W2058875688 hasConceptScore W2058875688C134306372 @default.
- W2058875688 hasConceptScore W2058875688C165160513 @default.
- W2058875688 hasConceptScore W2058875688C2524010 @default.
- W2058875688 hasConceptScore W2058875688C2779886137 @default.
- W2058875688 hasConceptScore W2058875688C33923547 @default.
- W2058875688 hasConceptScore W2058875688C71924100 @default.
- W2058875688 hasConceptScore W2058875688C83330619 @default.
- W2058875688 hasIssue "3" @default.
- W2058875688 hasLocation W20588756881 @default.
- W2058875688 hasLocation W20588756882 @default.
- W2058875688 hasOpenAccess W2058875688 @default.
- W2058875688 hasPrimaryLocation W20588756881 @default.
- W2058875688 hasRelatedWork W2027569582 @default.
- W2058875688 hasRelatedWork W2050770628 @default.
- W2058875688 hasRelatedWork W2058875688 @default.
- W2058875688 hasRelatedWork W2088269674 @default.
- W2058875688 hasRelatedWork W2133613889 @default.
- W2058875688 hasRelatedWork W2271051167 @default.
- W2058875688 hasRelatedWork W2324053001 @default.