Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058959574> ?p ?o ?g. }
- W2058959574 endingPage "223" @default.
- W2058959574 startingPage "212" @default.
- W2058959574 abstract "To develop and validate an artificial neural network (ANN) for predicting survival of trauma patients based on standard prehospital variables, emergency room admission variables, and Injury Severity Score (ISS) using data derived from a regional area trauma system, and to compare this model with known trauma scoring systems.The study was composed of 10,609 patients admitted to 24 hospitals comprising a seven-county suburban/rural trauma region adjacent to a major metropolitan area. The data was generated as part of the New York State trauma registry. Study period was from January 1993 through December 1996 (1993-1994: 5,168 patients; 1995: 2,768 patients; 1996: 2,673 patients).A standard feed-forward back-propagation neural network was developed using Glasgow Coma Scale, systolic blood pressure, heart rate, respiratory rate, temperature, hematocrit, age, sex, intubation status, ICD-9-CM Injury E-code, and ISS as input variables. The network had a single layer of hidden nodes. Initial network development of the model was performed on the 1993-1994 data. Subsequent models were generated using the 1993, 1994, and 1995 data. The model was tested first on the 1995 and then on the 1996 data. The ANN model was tested against Trauma and Injury Severity Score (TRISS) and ISS using the receiver operator characteristic (ROC) area under the curve [ROC-A(z)], Lemeshow-Hosmer C-statistic, and calibration curves.The ANN showed good clustering of the data, with good separation of nonsurvivors and survivors. The ROCA(z) was 0.912 for the ANN, 0.895 for TRISS, and 0.766 for ISS. The ANN exceeded TRISS with respect to calibration (Lemeshow-Hosmer C-statistic: 7.4 for ANN; 17.1 for TRISS). The prediction of survivors was good for both models. The ANN exceeded TRISS in nonsurvivor prediction.An ANN developed for trauma patients using prehospital, emergency room admission data, and ISS gave good prediction of survival. It was accurate and had excellent calibration. This study expands our previous results developed at a single Level I trauma center and shows that an ANN model for predicting trauma deaths can be applied across hospitals with good results" @default.
- W2058959574 created "2016-06-24" @default.
- W2058959574 creator A5020354383 @default.
- W2058959574 creator A5023847106 @default.
- W2058959574 creator A5032058918 @default.
- W2058959574 creator A5044980694 @default.
- W2058959574 creator A5070889122 @default.
- W2058959574 date "2000-08-01" @default.
- W2058959574 modified "2023-09-27" @default.
- W2058959574 title "An Artificial Neural Network as a Model for Prediction of Survival in Trauma Patients: Validation for a Regional Trauma Area" @default.
- W2058959574 cites W1972135219 @default.
- W2058959574 cites W1976789140 @default.
- W2058959574 cites W1978716092 @default.
- W2058959574 cites W1980783599 @default.
- W2058959574 cites W1995163977 @default.
- W2058959574 cites W1996381855 @default.
- W2058959574 cites W1998174897 @default.
- W2058959574 cites W1999826459 @default.
- W2058959574 cites W2007902037 @default.
- W2058959574 cites W2008173916 @default.
- W2058959574 cites W2019128184 @default.
- W2058959574 cites W2029357626 @default.
- W2058959574 cites W2040598998 @default.
- W2058959574 cites W2041126249 @default.
- W2058959574 cites W2049279157 @default.
- W2058959574 cites W2050189583 @default.
- W2058959574 cites W2053194201 @default.
- W2058959574 cites W2055117805 @default.
- W2058959574 cites W2057265704 @default.
- W2058959574 cites W2062884568 @default.
- W2058959574 cites W2067063204 @default.
- W2058959574 cites W2073315399 @default.
- W2058959574 cites W2073956373 @default.
- W2058959574 cites W2083835986 @default.
- W2058959574 cites W2086312927 @default.
- W2058959574 cites W2091863284 @default.
- W2058959574 cites W2128718068 @default.
- W2058959574 cites W2151817208 @default.
- W2058959574 cites W2165550102 @default.
- W2058959574 cites W2266995761 @default.
- W2058959574 cites W2313983352 @default.
- W2058959574 cites W29385447 @default.
- W2058959574 cites W4238573438 @default.
- W2058959574 cites W4320301321 @default.
- W2058959574 doi "https://doi.org/10.1097/00005373-200008000-00006" @default.
- W2058959574 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10963531" @default.
- W2058959574 hasPublicationYear "2000" @default.
- W2058959574 type Work @default.
- W2058959574 sameAs 2058959574 @default.
- W2058959574 citedByCount "67" @default.
- W2058959574 countsByYear W20589595742012 @default.
- W2058959574 countsByYear W20589595742013 @default.
- W2058959574 countsByYear W20589595742014 @default.
- W2058959574 countsByYear W20589595742015 @default.
- W2058959574 countsByYear W20589595742016 @default.
- W2058959574 countsByYear W20589595742017 @default.
- W2058959574 countsByYear W20589595742018 @default.
- W2058959574 countsByYear W20589595742019 @default.
- W2058959574 countsByYear W20589595742020 @default.
- W2058959574 countsByYear W20589595742021 @default.
- W2058959574 countsByYear W20589595742022 @default.
- W2058959574 countsByYear W20589595742023 @default.
- W2058959574 crossrefType "journal-article" @default.
- W2058959574 hasAuthorship W2058959574A5020354383 @default.
- W2058959574 hasAuthorship W2058959574A5023847106 @default.
- W2058959574 hasAuthorship W2058959574A5032058918 @default.
- W2058959574 hasAuthorship W2058959574A5044980694 @default.
- W2058959574 hasAuthorship W2058959574A5070889122 @default.
- W2058959574 hasConcept C105795698 @default.
- W2058959574 hasConcept C126322002 @default.
- W2058959574 hasConcept C141071460 @default.
- W2058959574 hasConcept C17624336 @default.
- W2058959574 hasConcept C190385971 @default.
- W2058959574 hasConcept C194828623 @default.
- W2058959574 hasConcept C2777175280 @default.
- W2058959574 hasConcept C3017944768 @default.
- W2058959574 hasConcept C33923547 @default.
- W2058959574 hasConcept C58471807 @default.
- W2058959574 hasConcept C71924100 @default.
- W2058959574 hasConcept C85004164 @default.
- W2058959574 hasConceptScore W2058959574C105795698 @default.
- W2058959574 hasConceptScore W2058959574C126322002 @default.
- W2058959574 hasConceptScore W2058959574C141071460 @default.
- W2058959574 hasConceptScore W2058959574C17624336 @default.
- W2058959574 hasConceptScore W2058959574C190385971 @default.
- W2058959574 hasConceptScore W2058959574C194828623 @default.
- W2058959574 hasConceptScore W2058959574C2777175280 @default.
- W2058959574 hasConceptScore W2058959574C3017944768 @default.
- W2058959574 hasConceptScore W2058959574C33923547 @default.
- W2058959574 hasConceptScore W2058959574C58471807 @default.
- W2058959574 hasConceptScore W2058959574C71924100 @default.
- W2058959574 hasConceptScore W2058959574C85004164 @default.
- W2058959574 hasIssue "2" @default.
- W2058959574 hasLocation W20589595741 @default.
- W2058959574 hasLocation W20589595742 @default.
- W2058959574 hasOpenAccess W2058959574 @default.
- W2058959574 hasPrimaryLocation W20589595741 @default.
- W2058959574 hasRelatedWork W1565577989 @default.