Matches in SemOpenAlex for { <https://semopenalex.org/work/W2058980787> ?p ?o ?g. }
- W2058980787 endingPage "31833" @default.
- W2058980787 startingPage "31827" @default.
- W2058980787 abstract "Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm−1 that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water. Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm−1 that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water. IntroductionMitochondria from many higher plants possess, in addition to the conventional cytochrome c oxidase, a second terminal oxidase that oxidizes ubiquinol (1.Finnegan P.M. Soole K.L. Umbach A.L. Plant Mitochondria: From Genome To Function. Kluwer Academic Publishers, Dordrecht, The Netherlands2004: 163Google Scholar, 2.Berthold D.A. Stenmark P. Annu. Rev. Plant. Biol. 2003; 54: 497-517Crossref PubMed Scopus (109) Google Scholar, 3.Affourtit C. Albury M.S. Crichton P.G. Moore A.L. FEBS Lett. 2002; 510: 121-126Crossref PubMed Scopus (111) Google Scholar). In thermogenic plants this alternative oxidase (AOX) 6The abbreviations used are: AOXalternative oxidaseATRattenuated total reflectionδIPin plane bendingFTIRFourier transform infraredTAOtrypanosomal alternative oxidaserTAOrecombinant TAO expressed in a heme-deficient strain of E. coliνs and νassymmetric and asymmetric stretching, respectively. plays a key role in the release of heat for pollination purposes or for maintaining a warm environment within the flower at low ambient temperatures. In nonthermogenic plants its function is still under debate; proposed roles include maintaining tricarboxylic acid cycle turnover under high cytosolic phosphorylation potentials, defense against oxidative stress, and growth rate and energy charge homeostasis (4.Moore A.L. Albury M.S. Crichton P.G. Affourtit C. Trends Plant Sci. 2002; 7: 478-481Abstract Full Text Full Text PDF PubMed Scopus (152) Google Scholar). AOX is also found in species of fungi, green algae, bacteria, and protozoa (5.McDonald A.E. Vanlerberghe G.C. Comp. Biochem. Physiol. D. 2006; 1: 357-364Google Scholar) and, more recently, in mollusks, nematodes, and chordates (6.McDonald A. Vanlerberghe G. IUBMB Life. 2004; 56: 333-341Crossref PubMed Scopus (84) Google Scholar). Of particular importance, however, is its presence in pathogenic protozoa such as the blood parasite Trypanosoma brucei (7.Chaudhuri M. Ott R.D. Hill G.C. Trends Parasitol. 2006; 22: 484-491Abstract Full Text Full Text PDF PubMed Scopus (131) Google Scholar) and the intestinal parasite Cryptosporidium parvum (8.Roberts C.W. Roberts F. Henriquez F.L. Akiyoshi D. Samuel B.U. Richards T.A. Milhous W. Kyle D. McIntosh L. Hill G.C. Chaudhuri M. Tzipori S. McLeod R. Int. J. Parasitol. 2004; 34: 297-308Crossref PubMed Scopus (67) Google Scholar, 9.Suzuki T. Hashimoto T. Yabu Y. Kido Y. Sakamoto K. Nihei C. Hato M. Suzuki S. Amano Y. Nagai K. Hosokawa T. Minagawa N. Ohta N. Kita K. Biochem. Biophys. Res. Commun. 2004; 313: 1044-1052Crossref PubMed Scopus (50) Google Scholar). T. brucei is a parasite that causes African sleeping sickness in humans and Nagana in livestock and is transmitted by the tsetse fly (7.Chaudhuri M. Ott R.D. Hill G.C. Trends Parasitol. 2006; 22: 484-491Abstract Full Text Full Text PDF PubMed Scopus (131) Google Scholar). The bloodstream forms of T. brucei appear to depend solely on its alternative oxidase (TAO) for respiration. Because the protein is absent from the mammalian host, TAO is an attractive and important chemotherapeutic target for African trypanosomiasis (7.Chaudhuri M. Ott R.D. Hill G.C. Trends Parasitol. 2006; 22: 484-491Abstract Full Text Full Text PDF PubMed Scopus (131) Google Scholar, 8.Roberts C.W. Roberts F. Henriquez F.L. Akiyoshi D. Samuel B.U. Richards T.A. Milhous W. Kyle D. McIntosh L. Hill G.C. Chaudhuri M. Tzipori S. McLeod R. Int. J. Parasitol. 2004; 34: 297-308Crossref PubMed Scopus (67) Google Scholar, 9.Suzuki T. Hashimoto T. Yabu Y. Kido Y. Sakamoto K. Nihei C. Hato M. Suzuki S. Amano Y. Nagai K. Hosokawa T. Minagawa N. Ohta N. Kita K. Biochem. Biophys. Res. Commun. 2004; 313: 1044-1052Crossref PubMed Scopus (50) Google Scholar, 10.Nihei C. Fukai Y. Kita K. Biochim. Biophys. Acta. 2002; 1587: 234-239Crossref PubMed Scopus (77) Google Scholar). In this respect it is interesting to note that ascofuranone, isolated from the pathogenic fungus Ascochyta visiae, specifically and potently inhibits the quinol oxidase activity of TAO (11.Minagawa N. Yabu Y. Kita K. Nagai K. Ohta N. Meguro K. Sakajo S. Yoshimoto A. Mol. Biochem. Parasitol. 1997; 84: 271-280Crossref PubMed Scopus (58) Google Scholar) and rapidly kills the parasites. In addition, the chemotherapeutic efficacy of ascofuranone in vivo has been confirmed (12.Yabu Y. Yoshida A. Suzuki T. Nihei C. Kawai K. Minagawa N. Hosokawa T. Nagai K. Kita K. Ohta N. Parasitol. Int. 2003; 52: 155-164Crossref PubMed Scopus (64) Google Scholar).Compared with other respiratory chain complexes, the structure and mechanism of AOX are poorly characterized because of difficulties encountered in purification and a dearth of spectroscopic signatures. It has been proposed from sequence comparisons that AOX is a nonheme diiron carboxylate protein in which the metal atoms are ligated by glutamic acid and histidine residues within a four-helix bundle (1.Finnegan P.M. Soole K.L. Umbach A.L. Plant Mitochondria: From Genome To Function. Kluwer Academic Publishers, Dordrecht, The Netherlands2004: 163Google Scholar, 2.Berthold D.A. Stenmark P. Annu. Rev. Plant. Biol. 2003; 54: 497-517Crossref PubMed Scopus (109) Google Scholar, 13.Andersson M.E. Nordlund P. FEBS Lett. 1999; 449: 17-22Crossref PubMed Scopus (126) Google Scholar). The requirement for such a tertiary structural motif, as well as the necessary spacing between the iron-ligating amino acids, imposes considerable constraints upon overall possible three-dimensional structure and, consequently, its attachment to the membrane. The current model of the AOX, supported by mutagenesis studies, predicts a monotopic integral membrane protein (2.Berthold D.A. Stenmark P. Annu. Rev. Plant. Biol. 2003; 54: 497-517Crossref PubMed Scopus (109) Google Scholar, 13.Andersson M.E. Nordlund P. FEBS Lett. 1999; 449: 17-22Crossref PubMed Scopus (126) Google Scholar, 14.Berthold D.A. Andersson M.E. Nordlund P. Biochim. Biophys. Acta. 2000; 1460: 241-254Crossref PubMed Scopus (168) Google Scholar, 15.Nakamura K. Sakamoto K. Kido Y. Fujimoto Y. Suzuki T. Suzuki M. Yabu Y. Ohta N. Tsuda A. Onuma M. Kita K. Biochem. Biophys. Res. Commun. 2005; 334: 593-600Crossref PubMed Scopus (30) Google Scholar) associating with one leaflet of the lipid bilayer. Although analyses of yeast and trypanosomal enzymes have established that iron is required for activity (16.Minagawa N. Sakajo S. Komiyama T. Yoshimoto A. FEBS Lett. 1990; 267: 114-116Crossref PubMed Scopus (49) Google Scholar, 17.Ajayi W.U. Chaudhuri M. Hill G.C. J. Biol. Chem. 2002; 277: 8187-8193Abstract Full Text Full Text PDF PubMed Scopus (54) Google Scholar), early investigations of either mitochondria or partially purified protein failed to reveal spectroscopic signatures of its active site (18.Rich P.R. FEBS Lett. 1978; 96: 252-256Crossref Scopus (77) Google Scholar, 19.Berthold D.A. Siedow J.N. Plant Physiol. 1993; 101: 113-119Crossref PubMed Scopus (49) Google Scholar). The first spectroscopic evidence for iron involvement was provided by Berthold et al. (20.Berthold D.A. Voevodskaya N. Stenmark P. Gräslund A. Nordlund P. J. Biol. Chem. 2002; 277: 43608-43614Abstract Full Text Full Text PDF PubMed Scopus (68) Google Scholar), who reported two EPR signals in Escherichia coli membranes that contained an overexpressed, truncated but active Arabidopsis thaliana alternative oxidase (AOX1a) fused to a maltose-binding protein. A signal around g = 15, observed with parallel mode EPR in reduced samples, was attributed to the diferrous state. A second signal, observed only after reaction of this state with oxygen, was assigned to a mixed valence (FeIIFeIII) form. More recently, Affourtit and Moore (21.Affourtit C. Moore A.L. Biochim. Biophys. Acta. 2004; 1608: 181-189Crossref PubMed Scopus (22) Google Scholar) prepared an active AOX protein from Arum maculatum. Parallel mode EPR studies (22.Moore A.L. Carré J.E. Affourtit C. Albury M.S. Crichton P.G. Kita K. Heathcote P. Biochim. Biophys. Acta. 2008; 1777: 327-330Crossref PubMed Scopus (46) Google Scholar) confirmed the presence of the diferrous signal in the reduced protein but attempts to generate the mixed valence signal of Berthold et al. (20.Berthold D.A. Voevodskaya N. Stenmark P. Gräslund A. Nordlund P. J. Biol. Chem. 2002; 277: 43608-43614Abstract Full Text Full Text PDF PubMed Scopus (68) Google Scholar) were not successful. Further spectroscopic tools are clearly desirable to resolve these inconsistencies, and, with this aim in mind, we report here the first electrochemical/FTIR study of a highly purified and stable preparation of recombinant AOX (rTAO) from T. brucei. IntroductionMitochondria from many higher plants possess, in addition to the conventional cytochrome c oxidase, a second terminal oxidase that oxidizes ubiquinol (1.Finnegan P.M. Soole K.L. Umbach A.L. Plant Mitochondria: From Genome To Function. Kluwer Academic Publishers, Dordrecht, The Netherlands2004: 163Google Scholar, 2.Berthold D.A. Stenmark P. Annu. Rev. Plant. Biol. 2003; 54: 497-517Crossref PubMed Scopus (109) Google Scholar, 3.Affourtit C. Albury M.S. Crichton P.G. Moore A.L. FEBS Lett. 2002; 510: 121-126Crossref PubMed Scopus (111) Google Scholar). In thermogenic plants this alternative oxidase (AOX) 6The abbreviations used are: AOXalternative oxidaseATRattenuated total reflectionδIPin plane bendingFTIRFourier transform infraredTAOtrypanosomal alternative oxidaserTAOrecombinant TAO expressed in a heme-deficient strain of E. coliνs and νassymmetric and asymmetric stretching, respectively. plays a key role in the release of heat for pollination purposes or for maintaining a warm environment within the flower at low ambient temperatures. In nonthermogenic plants its function is still under debate; proposed roles include maintaining tricarboxylic acid cycle turnover under high cytosolic phosphorylation potentials, defense against oxidative stress, and growth rate and energy charge homeostasis (4.Moore A.L. Albury M.S. Crichton P.G. Affourtit C. Trends Plant Sci. 2002; 7: 478-481Abstract Full Text Full Text PDF PubMed Scopus (152) Google Scholar). AOX is also found in species of fungi, green algae, bacteria, and protozoa (5.McDonald A.E. Vanlerberghe G.C. Comp. Biochem. Physiol. D. 2006; 1: 357-364Google Scholar) and, more recently, in mollusks, nematodes, and chordates (6.McDonald A. Vanlerberghe G. IUBMB Life. 2004; 56: 333-341Crossref PubMed Scopus (84) Google Scholar). Of particular importance, however, is its presence in pathogenic protozoa such as the blood parasite Trypanosoma brucei (7.Chaudhuri M. Ott R.D. Hill G.C. Trends Parasitol. 2006; 22: 484-491Abstract Full Text Full Text PDF PubMed Scopus (131) Google Scholar) and the intestinal parasite Cryptosporidium parvum (8.Roberts C.W. Roberts F. Henriquez F.L. Akiyoshi D. Samuel B.U. Richards T.A. Milhous W. Kyle D. McIntosh L. Hill G.C. Chaudhuri M. Tzipori S. McLeod R. Int. J. Parasitol. 2004; 34: 297-308Crossref PubMed Scopus (67) Google Scholar, 9.Suzuki T. Hashimoto T. Yabu Y. Kido Y. Sakamoto K. Nihei C. Hato M. Suzuki S. Amano Y. Nagai K. Hosokawa T. Minagawa N. Ohta N. Kita K. Biochem. Biophys. Res. Commun. 2004; 313: 1044-1052Crossref PubMed Scopus (50) Google Scholar). T. brucei is a parasite that causes African sleeping sickness in humans and Nagana in livestock and is transmitted by the tsetse fly (7.Chaudhuri M. Ott R.D. Hill G.C. Trends Parasitol. 2006; 22: 484-491Abstract Full Text Full Text PDF PubMed Scopus (131) Google Scholar). The bloodstream forms of T. brucei appear to depend solely on its alternative oxidase (TAO) for respiration. Because the protein is absent from the mammalian host, TAO is an attractive and important chemotherapeutic target for African trypanosomiasis (7.Chaudhuri M. Ott R.D. Hill G.C. Trends Parasitol. 2006; 22: 484-491Abstract Full Text Full Text PDF PubMed Scopus (131) Google Scholar, 8.Roberts C.W. Roberts F. Henriquez F.L. Akiyoshi D. Samuel B.U. Richards T.A. Milhous W. Kyle D. McIntosh L. Hill G.C. Chaudhuri M. Tzipori S. McLeod R. Int. J. Parasitol. 2004; 34: 297-308Crossref PubMed Scopus (67) Google Scholar, 9.Suzuki T. Hashimoto T. Yabu Y. Kido Y. Sakamoto K. Nihei C. Hato M. Suzuki S. Amano Y. Nagai K. Hosokawa T. Minagawa N. Ohta N. Kita K. Biochem. Biophys. Res. Commun. 2004; 313: 1044-1052Crossref PubMed Scopus (50) Google Scholar, 10.Nihei C. Fukai Y. Kita K. Biochim. Biophys. Acta. 2002; 1587: 234-239Crossref PubMed Scopus (77) Google Scholar). In this respect it is interesting to note that ascofuranone, isolated from the pathogenic fungus Ascochyta visiae, specifically and potently inhibits the quinol oxidase activity of TAO (11.Minagawa N. Yabu Y. Kita K. Nagai K. Ohta N. Meguro K. Sakajo S. Yoshimoto A. Mol. Biochem. Parasitol. 1997; 84: 271-280Crossref PubMed Scopus (58) Google Scholar) and rapidly kills the parasites. In addition, the chemotherapeutic efficacy of ascofuranone in vivo has been confirmed (12.Yabu Y. Yoshida A. Suzuki T. Nihei C. Kawai K. Minagawa N. Hosokawa T. Nagai K. Kita K. Ohta N. Parasitol. Int. 2003; 52: 155-164Crossref PubMed Scopus (64) Google Scholar).Compared with other respiratory chain complexes, the structure and mechanism of AOX are poorly characterized because of difficulties encountered in purification and a dearth of spectroscopic signatures. It has been proposed from sequence comparisons that AOX is a nonheme diiron carboxylate protein in which the metal atoms are ligated by glutamic acid and histidine residues within a four-helix bundle (1.Finnegan P.M. Soole K.L. Umbach A.L. Plant Mitochondria: From Genome To Function. Kluwer Academic Publishers, Dordrecht, The Netherlands2004: 163Google Scholar, 2.Berthold D.A. Stenmark P. Annu. Rev. Plant. Biol. 2003; 54: 497-517Crossref PubMed Scopus (109) Google Scholar, 13.Andersson M.E. Nordlund P. FEBS Lett. 1999; 449: 17-22Crossref PubMed Scopus (126) Google Scholar). The requirement for such a tertiary structural motif, as well as the necessary spacing between the iron-ligating amino acids, imposes considerable constraints upon overall possible three-dimensional structure and, consequently, its attachment to the membrane. The current model of the AOX, supported by mutagenesis studies, predicts a monotopic integral membrane protein (2.Berthold D.A. Stenmark P. Annu. Rev. Plant. Biol. 2003; 54: 497-517Crossref PubMed Scopus (109) Google Scholar, 13.Andersson M.E. Nordlund P. FEBS Lett. 1999; 449: 17-22Crossref PubMed Scopus (126) Google Scholar, 14.Berthold D.A. Andersson M.E. Nordlund P. Biochim. Biophys. Acta. 2000; 1460: 241-254Crossref PubMed Scopus (168) Google Scholar, 15.Nakamura K. Sakamoto K. Kido Y. Fujimoto Y. Suzuki T. Suzuki M. Yabu Y. Ohta N. Tsuda A. Onuma M. Kita K. Biochem. Biophys. Res. Commun. 2005; 334: 593-600Crossref PubMed Scopus (30) Google Scholar) associating with one leaflet of the lipid bilayer. Although analyses of yeast and trypanosomal enzymes have established that iron is required for activity (16.Minagawa N. Sakajo S. Komiyama T. Yoshimoto A. FEBS Lett. 1990; 267: 114-116Crossref PubMed Scopus (49) Google Scholar, 17.Ajayi W.U. Chaudhuri M. Hill G.C. J. Biol. Chem. 2002; 277: 8187-8193Abstract Full Text Full Text PDF PubMed Scopus (54) Google Scholar), early investigations of either mitochondria or partially purified protein failed to reveal spectroscopic signatures of its active site (18.Rich P.R. FEBS Lett. 1978; 96: 252-256Crossref Scopus (77) Google Scholar, 19.Berthold D.A. Siedow J.N. Plant Physiol. 1993; 101: 113-119Crossref PubMed Scopus (49) Google Scholar). The first spectroscopic evidence for iron involvement was provided by Berthold et al. (20.Berthold D.A. Voevodskaya N. Stenmark P. Gräslund A. Nordlund P. J. Biol. Chem. 2002; 277: 43608-43614Abstract Full Text Full Text PDF PubMed Scopus (68) Google Scholar), who reported two EPR signals in Escherichia coli membranes that contained an overexpressed, truncated but active Arabidopsis thaliana alternative oxidase (AOX1a) fused to a maltose-binding protein. A signal around g = 15, observed with parallel mode EPR in reduced samples, was attributed to the diferrous state. A second signal, observed only after reaction of this state with oxygen, was assigned to a mixed valence (FeIIFeIII) form. More recently, Affourtit and Moore (21.Affourtit C. Moore A.L. Biochim. Biophys. Acta. 2004; 1608: 181-189Crossref PubMed Scopus (22) Google Scholar) prepared an active AOX protein from Arum maculatum. Parallel mode EPR studies (22.Moore A.L. Carré J.E. Affourtit C. Albury M.S. Crichton P.G. Kita K. Heathcote P. Biochim. Biophys. Acta. 2008; 1777: 327-330Crossref PubMed Scopus (46) Google Scholar) confirmed the presence of the diferrous signal in the reduced protein but attempts to generate the mixed valence signal of Berthold et al. (20.Berthold D.A. Voevodskaya N. Stenmark P. Gräslund A. Nordlund P. J. Biol. Chem. 2002; 277: 43608-43614Abstract Full Text Full Text PDF PubMed Scopus (68) Google Scholar) were not successful. Further spectroscopic tools are clearly desirable to resolve these inconsistencies, and, with this aim in mind, we report here the first electrochemical/FTIR study of a highly purified and stable preparation of recombinant AOX (rTAO) from T. brucei." @default.
- W2058980787 created "2016-06-24" @default.
- W2058980787 creator A5006296380 @default.
- W2058980787 creator A5032175320 @default.
- W2058980787 creator A5039327431 @default.
- W2058980787 creator A5058424705 @default.
- W2058980787 creator A5072986768 @default.
- W2058980787 date "2009-11-01" @default.
- W2058980787 modified "2023-10-16" @default.
- W2058980787 title "Three Redox States of Trypanosoma brucei Alternative Oxidase Identified by Infrared Spectroscopy and Electrochemistry" @default.
- W2058980787 cites W1562223547 @default.
- W2058980787 cites W185850242 @default.
- W2058980787 cites W1963898473 @default.
- W2058980787 cites W1968560631 @default.
- W2058980787 cites W1971517307 @default.
- W2058980787 cites W1972139565 @default.
- W2058980787 cites W1973860482 @default.
- W2058980787 cites W1974259086 @default.
- W2058980787 cites W1983891926 @default.
- W2058980787 cites W1984489267 @default.
- W2058980787 cites W1987566916 @default.
- W2058980787 cites W1987899226 @default.
- W2058980787 cites W1990550054 @default.
- W2058980787 cites W1993689016 @default.
- W2058980787 cites W1998061482 @default.
- W2058980787 cites W1998120645 @default.
- W2058980787 cites W1999278483 @default.
- W2058980787 cites W2010836939 @default.
- W2058980787 cites W2022023890 @default.
- W2058980787 cites W2028541892 @default.
- W2058980787 cites W2031046328 @default.
- W2058980787 cites W2031658822 @default.
- W2058980787 cites W2032638839 @default.
- W2058980787 cites W2035516147 @default.
- W2058980787 cites W2035517753 @default.
- W2058980787 cites W2040277828 @default.
- W2058980787 cites W2043978343 @default.
- W2058980787 cites W2048693286 @default.
- W2058980787 cites W2051451565 @default.
- W2058980787 cites W2056701468 @default.
- W2058980787 cites W2060322429 @default.
- W2058980787 cites W2062634763 @default.
- W2058980787 cites W2065074542 @default.
- W2058980787 cites W2077284199 @default.
- W2058980787 cites W2077749836 @default.
- W2058980787 cites W2079946015 @default.
- W2058980787 cites W2082094306 @default.
- W2058980787 cites W2086867197 @default.
- W2058980787 cites W2087636026 @default.
- W2058980787 cites W2090226209 @default.
- W2058980787 cites W2091584330 @default.
- W2058980787 cites W2102264945 @default.
- W2058980787 cites W2123399767 @default.
- W2058980787 cites W2130359790 @default.
- W2058980787 cites W3028240787 @default.
- W2058980787 doi "https://doi.org/10.1074/jbc.m109.059980" @default.
- W2058980787 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2797253" @default.
- W2058980787 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19767647" @default.
- W2058980787 hasPublicationYear "2009" @default.
- W2058980787 type Work @default.
- W2058980787 sameAs 2058980787 @default.
- W2058980787 citedByCount "27" @default.
- W2058980787 countsByYear W20589807872013 @default.
- W2058980787 countsByYear W20589807872014 @default.
- W2058980787 countsByYear W20589807872015 @default.
- W2058980787 countsByYear W20589807872016 @default.
- W2058980787 countsByYear W20589807872017 @default.
- W2058980787 countsByYear W20589807872018 @default.
- W2058980787 countsByYear W20589807872019 @default.
- W2058980787 countsByYear W20589807872020 @default.
- W2058980787 countsByYear W20589807872021 @default.
- W2058980787 countsByYear W20589807872022 @default.
- W2058980787 crossrefType "journal-article" @default.
- W2058980787 hasAuthorship W2058980787A5006296380 @default.
- W2058980787 hasAuthorship W2058980787A5032175320 @default.
- W2058980787 hasAuthorship W2058980787A5039327431 @default.
- W2058980787 hasAuthorship W2058980787A5058424705 @default.
- W2058980787 hasAuthorship W2058980787A5072986768 @default.
- W2058980787 hasBestOaLocation W20589807871 @default.
- W2058980787 hasConcept C104317684 @default.
- W2058980787 hasConcept C120665830 @default.
- W2058980787 hasConcept C121332964 @default.
- W2058980787 hasConcept C147789679 @default.
- W2058980787 hasConcept C158355884 @default.
- W2058980787 hasConcept C17525397 @default.
- W2058980787 hasConcept C179104552 @default.
- W2058980787 hasConcept C181199279 @default.
- W2058980787 hasConcept C185592680 @default.
- W2058980787 hasConcept C2779502636 @default.
- W2058980787 hasConcept C38485361 @default.
- W2058980787 hasConcept C52859227 @default.
- W2058980787 hasConcept C55493867 @default.
- W2058980787 hasConcept C55904794 @default.
- W2058980787 hasConcept C75473681 @default.
- W2058980787 hasConceptScore W2058980787C104317684 @default.
- W2058980787 hasConceptScore W2058980787C120665830 @default.
- W2058980787 hasConceptScore W2058980787C121332964 @default.
- W2058980787 hasConceptScore W2058980787C147789679 @default.