Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059098568> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2059098568 endingPage "7894" @default.
- W2059098568 startingPage "7863" @default.
- W2059098568 abstract "An integral self-affine tile is the solution of a set equation <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=bold upper A script upper T equals union Underscript d element-of script upper D Endscripts left-parenthesis script upper T plus d right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>A</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>T</mml:mi> </mml:mrow> <mml:mo>=</mml:mo> <mml:munder> <mml:mo>⋃<!-- ⋃ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>d</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>D</mml:mi> </mml:mrow> </mml:mrow> </mml:munder> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>T</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>d</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbf {A} mathcal {T} = bigcup _{d in mathcal {D}} (mathcal {T} + d)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=bold upper A> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbf {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n times n> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>n times n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> integer matrix and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper D> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>D</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite subset of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Z Superscript n> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {Z}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the recent decades, these objects and the induced tilings have been studied systematically. We extend this theory to matrices <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=bold upper A element-of double-struck upper Q Superscript n times n> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>A</mml:mi> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Q</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbf {A} in mathbb {Q}^{n times n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We define rational self-affine tiles as compact subsets of the open subring <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R Superscript n Baseline times product Underscript German p Endscripts upper K Subscript German p> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>×<!-- × --></mml:mo> <mml:munder> <mml:mo>∏<!-- ∏ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>p</mml:mi> </mml:mrow> </mml:munder> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>p</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {R}^ntimes prod _mathfrak {p} K_mathfrak {p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the adèle ring <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper A Subscript upper K> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>A</mml:mi> </mml:mrow> <mml:mi>K</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>mathbb {A}_K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where the factors of the (finite) product are certain <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German p> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>p</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic completions of a number field <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=application/x-tex>K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that is defined in terms of the characteristic polynomial of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=bold upper A> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbf {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Employing methods from classical algebraic number theory, Fourier analysis in number fields, and results on zero sets of transfer operators, we establish a general tiling theorem for these tiles. We also associate a second kind of tile with a rational matrix. These tiles are defined as the intersection of a (translation of a) rational self-affine tile with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R Superscript n Baseline times product Underscript German p Endscripts StartSet 0 EndSet asymptotically-equals double-struck upper R Superscript n> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>×<!-- × --></mml:mo> <mml:munder> <mml:mo>∏<!-- ∏ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>p</mml:mi> </mml:mrow> </mml:munder> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence=false stretchy=false>}</mml:mo> <mml:mo>≃<!-- ≃ --></mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {R}^n times prod _mathfrak {p} {0} simeq mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Although these intersection tiles have a complicated structure and are no longer self-affine, we are able to prove a tiling theorem for these tiles as well. For particular choices of the digit set <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper D> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>D</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, intersection tiles are instances of tiles defined in terms of shift radix systems and canonical number systems. This enables us to gain new results for tilings associated with numeration systems." @default.
- W2059098568 created "2016-06-24" @default.
- W2059098568 creator A5020243260 @default.
- W2059098568 creator A5079044708 @default.
- W2059098568 date "2015-03-13" @default.
- W2059098568 modified "2023-10-12" @default.
- W2059098568 title "Rational self-affine tiles" @default.
- W2059098568 cites W1501162952 @default.
- W2059098568 cites W1634992080 @default.
- W2059098568 cites W1979109450 @default.
- W2059098568 cites W1990790475 @default.
- W2059098568 cites W1993673706 @default.
- W2059098568 cites W2002031800 @default.
- W2059098568 cites W2005714434 @default.
- W2059098568 cites W2007936892 @default.
- W2059098568 cites W2015393873 @default.
- W2059098568 cites W2039899292 @default.
- W2059098568 cites W2060189933 @default.
- W2059098568 cites W2061708606 @default.
- W2059098568 cites W2062512227 @default.
- W2059098568 cites W2063892473 @default.
- W2059098568 cites W2065229439 @default.
- W2059098568 cites W2068598840 @default.
- W2059098568 cites W2082865270 @default.
- W2059098568 cites W2088007210 @default.
- W2059098568 cites W2123584791 @default.
- W2059098568 cites W2124301002 @default.
- W2059098568 cites W2129727166 @default.
- W2059098568 cites W2133966203 @default.
- W2059098568 cites W2138958715 @default.
- W2059098568 cites W2155254221 @default.
- W2059098568 cites W2168010319 @default.
- W2059098568 cites W2172152577 @default.
- W2059098568 cites W2325150659 @default.
- W2059098568 cites W2592486956 @default.
- W2059098568 cites W2735367813 @default.
- W2059098568 cites W3105233392 @default.
- W2059098568 cites W3204164517 @default.
- W2059098568 cites W4212938731 @default.
- W2059098568 cites W4238149399 @default.
- W2059098568 cites W4240198037 @default.
- W2059098568 cites W4243341598 @default.
- W2059098568 cites W4249775755 @default.
- W2059098568 cites W2554636095 @default.
- W2059098568 doi "https://doi.org/10.1090/s0002-9947-2015-06264-3" @default.
- W2059098568 hasPublicationYear "2015" @default.
- W2059098568 type Work @default.
- W2059098568 sameAs 2059098568 @default.
- W2059098568 citedByCount "10" @default.
- W2059098568 countsByYear W20590985682014 @default.
- W2059098568 countsByYear W20590985682015 @default.
- W2059098568 countsByYear W20590985682021 @default.
- W2059098568 countsByYear W20590985682022 @default.
- W2059098568 countsByYear W20590985682023 @default.
- W2059098568 crossrefType "journal-article" @default.
- W2059098568 hasAuthorship W2059098568A5020243260 @default.
- W2059098568 hasAuthorship W2059098568A5079044708 @default.
- W2059098568 hasBestOaLocation W20590985681 @default.
- W2059098568 hasConcept C11413529 @default.
- W2059098568 hasConcept C154945302 @default.
- W2059098568 hasConcept C41008148 @default.
- W2059098568 hasConceptScore W2059098568C11413529 @default.
- W2059098568 hasConceptScore W2059098568C154945302 @default.
- W2059098568 hasConceptScore W2059098568C41008148 @default.
- W2059098568 hasIssue "11" @default.
- W2059098568 hasLocation W20590985681 @default.
- W2059098568 hasLocation W205909856810 @default.
- W2059098568 hasLocation W20590985682 @default.
- W2059098568 hasLocation W20590985683 @default.
- W2059098568 hasLocation W20590985684 @default.
- W2059098568 hasLocation W20590985685 @default.
- W2059098568 hasLocation W20590985686 @default.
- W2059098568 hasLocation W20590985687 @default.
- W2059098568 hasLocation W20590985688 @default.
- W2059098568 hasLocation W20590985689 @default.
- W2059098568 hasOpenAccess W2059098568 @default.
- W2059098568 hasPrimaryLocation W20590985681 @default.
- W2059098568 hasRelatedWork W2051487156 @default.
- W2059098568 hasRelatedWork W2073681303 @default.
- W2059098568 hasRelatedWork W2317200988 @default.
- W2059098568 hasRelatedWork W2350741829 @default.
- W2059098568 hasRelatedWork W2358668433 @default.
- W2059098568 hasRelatedWork W2376932109 @default.
- W2059098568 hasRelatedWork W2382290278 @default.
- W2059098568 hasRelatedWork W2390279801 @default.
- W2059098568 hasRelatedWork W2748952813 @default.
- W2059098568 hasRelatedWork W2899084033 @default.
- W2059098568 hasVolume "367" @default.
- W2059098568 isParatext "false" @default.
- W2059098568 isRetracted "false" @default.
- W2059098568 magId "2059098568" @default.
- W2059098568 workType "article" @default.