Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059103037> ?p ?o ?g. }
- W2059103037 endingPage "2426" @default.
- W2059103037 startingPage "2416" @default.
- W2059103037 abstract "HMG-CoA reductase (HMGR) is the target of statins, cholesterol-lowering drugs prescribed to millions of patients worldwide. More recent research indicates that HMGR could be a useful target in the development of antimicrobial agents. Over the last seven decades, researchers have proposed a series of increasingly complex reaction mechanisms for this biomedically important enzyme.The maturation of the mechanistic proposals for HMGR have paralleled advances in a diverse set of research areas, such as molecular biology and computational chemistry. Thus, the development of the HMGR mechanism provides a useful case study for following the advances in state-of-the-art methods in enzyme mechanism research. Similarly, the questions raised by these mechanism proposals reflect the limitations of the methods used to develop them.The mechanism of HMGR, a four-electron oxidoreductase, is unique and far more complex than originally thought. The reaction contains multiple chemical steps, coupled to large-scale domain motions of the homodimeric enzyme. The first proposals for the HMGR mechanism were based on kinetic and labeling experiments, drawing analogies to the mechanism of known dehydrogenases. Advances in molecular biology and bioinformatics enabled researchers to use site-directed mutagenesis experiments and protein sequencing to identify catalytically important glutamate, aspartate, and histidine residues. These studies, in turn, have generated new and more complicated mechanistic proposals.With the development of protein crystallography, researchers solved HMGR crystal structures to reveal an unexpected lysine residue at the center of the active site. The many crystal structures of HMGR led to increasingly complex mechanistic proposals, but the inherent limitations of the protein crystallography left a number of questions unresolved. For example, the protonation state of the glutamate residue within the active site cannot be clearly determined from the crystal structure. The differing protonation state of this residue leads to different proposed mechanisms for the enzyme.As computational analysis of large biomolecules has become more feasible, the application of methods such as hybrid quantum mechanics/molecular mechanics (QM/MM) calculations to the HMGR mechanism have led to the most detailed mechanistic proposal yet. As these methodologies continue to improve, they prove to be very powerful for the study of enzyme mechanisms in conjunction with protein crystallography. Nevertheless, even the most current mechanistic proposal for HMGR remains incomplete due to limitations of the current computational methodologies. Thus, HMGR serves as a model for how the combination of increasingly sophisticated experimental and computational methods can elucidate very complex enzyme mechanisms." @default.
- W2059103037 created "2016-06-24" @default.
- W2059103037 creator A5029114040 @default.
- W2059103037 creator A5031822398 @default.
- W2059103037 creator A5088202689 @default.
- W2059103037 date "2013-07-30" @default.
- W2059103037 modified "2023-10-17" @default.
- W2059103037 title "The Increasingly Complex Mechanism of HMG-CoA Reductase" @default.
- W2059103037 cites W1492259769 @default.
- W2059103037 cites W1496425493 @default.
- W2059103037 cites W1500847299 @default.
- W2059103037 cites W1512968983 @default.
- W2059103037 cites W1513449907 @default.
- W2059103037 cites W1531527991 @default.
- W2059103037 cites W1541822450 @default.
- W2059103037 cites W1559039716 @default.
- W2059103037 cites W1584298557 @default.
- W2059103037 cites W1597433573 @default.
- W2059103037 cites W1972430667 @default.
- W2059103037 cites W1973026772 @default.
- W2059103037 cites W1974641609 @default.
- W2059103037 cites W1974833847 @default.
- W2059103037 cites W1981403571 @default.
- W2059103037 cites W1994675489 @default.
- W2059103037 cites W2004873421 @default.
- W2059103037 cites W2015778839 @default.
- W2059103037 cites W2016678257 @default.
- W2059103037 cites W2026042328 @default.
- W2059103037 cites W2029485924 @default.
- W2059103037 cites W2035193977 @default.
- W2059103037 cites W2043732140 @default.
- W2059103037 cites W2047414725 @default.
- W2059103037 cites W2058484642 @default.
- W2059103037 cites W2060049336 @default.
- W2059103037 cites W2076970771 @default.
- W2059103037 cites W2080172904 @default.
- W2059103037 cites W2084744450 @default.
- W2059103037 cites W2085649710 @default.
- W2059103037 cites W2086024248 @default.
- W2059103037 cites W2093013278 @default.
- W2059103037 cites W2097698744 @default.
- W2059103037 cites W2105173706 @default.
- W2059103037 cites W2107290798 @default.
- W2059103037 cites W2107841008 @default.
- W2059103037 cites W2112940531 @default.
- W2059103037 cites W2126667730 @default.
- W2059103037 cites W2131115981 @default.
- W2059103037 cites W2131253747 @default.
- W2059103037 cites W2146087626 @default.
- W2059103037 cites W2154280454 @default.
- W2059103037 cites W2161252560 @default.
- W2059103037 cites W2168218005 @default.
- W2059103037 cites W2169806145 @default.
- W2059103037 cites W2407160000 @default.
- W2059103037 cites W4252021281 @default.
- W2059103037 cites W2070862838 @default.
- W2059103037 doi "https://doi.org/10.1021/ar3003267" @default.
- W2059103037 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4118817" @default.
- W2059103037 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23898905" @default.
- W2059103037 hasPublicationYear "2013" @default.
- W2059103037 type Work @default.
- W2059103037 sameAs 2059103037 @default.
- W2059103037 citedByCount "42" @default.
- W2059103037 countsByYear W20591030372014 @default.
- W2059103037 countsByYear W20591030372015 @default.
- W2059103037 countsByYear W20591030372016 @default.
- W2059103037 countsByYear W20591030372017 @default.
- W2059103037 countsByYear W20591030372018 @default.
- W2059103037 countsByYear W20591030372019 @default.
- W2059103037 countsByYear W20591030372020 @default.
- W2059103037 countsByYear W20591030372021 @default.
- W2059103037 countsByYear W20591030372022 @default.
- W2059103037 countsByYear W20591030372023 @default.
- W2059103037 crossrefType "journal-article" @default.
- W2059103037 hasAuthorship W2059103037A5029114040 @default.
- W2059103037 hasAuthorship W2059103037A5031822398 @default.
- W2059103037 hasAuthorship W2059103037A5088202689 @default.
- W2059103037 hasBestOaLocation W20591030372 @default.
- W2059103037 hasConcept C121332964 @default.
- W2059103037 hasConcept C134651460 @default.
- W2059103037 hasConcept C181199279 @default.
- W2059103037 hasConcept C185592680 @default.
- W2059103037 hasConcept C191120209 @default.
- W2059103037 hasConcept C2779268744 @default.
- W2059103037 hasConcept C55493867 @default.
- W2059103037 hasConcept C62520636 @default.
- W2059103037 hasConcept C70721500 @default.
- W2059103037 hasConcept C86803240 @default.
- W2059103037 hasConcept C89611455 @default.
- W2059103037 hasConceptScore W2059103037C121332964 @default.
- W2059103037 hasConceptScore W2059103037C134651460 @default.
- W2059103037 hasConceptScore W2059103037C181199279 @default.
- W2059103037 hasConceptScore W2059103037C185592680 @default.
- W2059103037 hasConceptScore W2059103037C191120209 @default.
- W2059103037 hasConceptScore W2059103037C2779268744 @default.
- W2059103037 hasConceptScore W2059103037C55493867 @default.
- W2059103037 hasConceptScore W2059103037C62520636 @default.
- W2059103037 hasConceptScore W2059103037C70721500 @default.