Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059193044> ?p ?o ?g. }
- W2059193044 endingPage "172" @default.
- W2059193044 startingPage "161" @default.
- W2059193044 abstract "The issue of visible light and infrared images fusion has been an active topic in both military and civilian areas, and a great many relevant algorithms and techniques have been developed accordingly. This paper addresses a novel adaptive approach to the above two patterns of images fusion problem, employing multi-scale geometry analysis (MGA) of non-subsampled shearlet transform (NSST) and fast non-negative matrix factorization (FNMF) together. Compared with other existing conventional MGA tools, NSST owns not only better feature-capturing capabilities, but also much lower computational complexities. As a modification version of the classic NMF model, FNMF overcomes the local optimum property inherent in NMF to a large extent. Furthermore, use of the FNMF with a less complex structure and much fewer iteration numbers required leads to the enhancement of the overall computational efficiency, which is undoubtedly meaningful and promising in so many real-time applications especially the military and medical technologies. Experimental results indicate that the proposed method is superior to other current popular ones in both aspects of subjective visual and objective performance." @default.
- W2059193044 created "2016-06-24" @default.
- W2059193044 creator A5008233279 @default.
- W2059193044 creator A5010912819 @default.
- W2059193044 creator A5030699864 @default.
- W2059193044 date "2014-11-01" @default.
- W2059193044 modified "2023-10-10" @default.
- W2059193044 title "Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization" @default.
- W2059193044 cites W1902027874 @default.
- W2059193044 cites W1964341312 @default.
- W2059193044 cites W1974593550 @default.
- W2059193044 cites W1980102592 @default.
- W2059193044 cites W1986231131 @default.
- W2059193044 cites W1986517950 @default.
- W2059193044 cites W1987850091 @default.
- W2059193044 cites W1999316653 @default.
- W2059193044 cites W2005443451 @default.
- W2059193044 cites W2015380729 @default.
- W2059193044 cites W2020442368 @default.
- W2059193044 cites W2022127005 @default.
- W2059193044 cites W2025202639 @default.
- W2059193044 cites W2031584393 @default.
- W2059193044 cites W2035848186 @default.
- W2059193044 cites W2039520532 @default.
- W2059193044 cites W2044867573 @default.
- W2059193044 cites W2045630464 @default.
- W2059193044 cites W2047348927 @default.
- W2059193044 cites W2047779467 @default.
- W2059193044 cites W2048964123 @default.
- W2059193044 cites W2054823391 @default.
- W2059193044 cites W2059350002 @default.
- W2059193044 cites W2065428319 @default.
- W2059193044 cites W2071755316 @default.
- W2059193044 cites W2072629894 @default.
- W2059193044 cites W2077061503 @default.
- W2059193044 cites W2077490725 @default.
- W2059193044 cites W2079515997 @default.
- W2059193044 cites W2082232962 @default.
- W2059193044 cites W2087694538 @default.
- W2059193044 cites W2094824638 @default.
- W2059193044 cites W2097061348 @default.
- W2059193044 cites W2098502158 @default.
- W2059193044 cites W2100016657 @default.
- W2059193044 cites W2100493539 @default.
- W2059193044 cites W2109484841 @default.
- W2059193044 cites W2109685970 @default.
- W2059193044 cites W2121219287 @default.
- W2059193044 cites W2137155471 @default.
- W2059193044 cites W2149720806 @default.
- W2059193044 cites W2167634460 @default.
- W2059193044 cites W2170726488 @default.
- W2059193044 doi "https://doi.org/10.1016/j.infrared.2014.07.019" @default.
- W2059193044 hasPublicationYear "2014" @default.
- W2059193044 type Work @default.
- W2059193044 sameAs 2059193044 @default.
- W2059193044 citedByCount "103" @default.
- W2059193044 countsByYear W20591930442015 @default.
- W2059193044 countsByYear W20591930442016 @default.
- W2059193044 countsByYear W20591930442017 @default.
- W2059193044 countsByYear W20591930442018 @default.
- W2059193044 countsByYear W20591930442019 @default.
- W2059193044 countsByYear W20591930442020 @default.
- W2059193044 countsByYear W20591930442021 @default.
- W2059193044 countsByYear W20591930442022 @default.
- W2059193044 countsByYear W20591930442023 @default.
- W2059193044 crossrefType "journal-article" @default.
- W2059193044 hasAuthorship W2059193044A5008233279 @default.
- W2059193044 hasAuthorship W2059193044A5010912819 @default.
- W2059193044 hasAuthorship W2059193044A5030699864 @default.
- W2059193044 hasConcept C106487976 @default.
- W2059193044 hasConcept C11413529 @default.
- W2059193044 hasConcept C115961682 @default.
- W2059193044 hasConcept C120665830 @default.
- W2059193044 hasConcept C121332964 @default.
- W2059193044 hasConcept C138885662 @default.
- W2059193044 hasConcept C152671427 @default.
- W2059193044 hasConcept C153180895 @default.
- W2059193044 hasConcept C154945302 @default.
- W2059193044 hasConcept C158355884 @default.
- W2059193044 hasConcept C158525013 @default.
- W2059193044 hasConcept C158693339 @default.
- W2059193044 hasConcept C159985019 @default.
- W2059193044 hasConcept C187834632 @default.
- W2059193044 hasConcept C192562407 @default.
- W2059193044 hasConcept C2776401178 @default.
- W2059193044 hasConcept C31972630 @default.
- W2059193044 hasConcept C41008148 @default.
- W2059193044 hasConcept C41895202 @default.
- W2059193044 hasConcept C42355184 @default.
- W2059193044 hasConcept C62520636 @default.
- W2059193044 hasConcept C67795661 @default.
- W2059193044 hasConcept C69744172 @default.
- W2059193044 hasConceptScore W2059193044C106487976 @default.
- W2059193044 hasConceptScore W2059193044C11413529 @default.
- W2059193044 hasConceptScore W2059193044C115961682 @default.
- W2059193044 hasConceptScore W2059193044C120665830 @default.
- W2059193044 hasConceptScore W2059193044C121332964 @default.
- W2059193044 hasConceptScore W2059193044C138885662 @default.