Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059195763> ?p ?o ?g. }
- W2059195763 endingPage "75" @default.
- W2059195763 startingPage "63" @default.
- W2059195763 abstract "This paper presents the details of a study on the measurement of oxygen flow by differential pressure method in a clinical ventilator system. The simulation results obtained from the COMSOL Multiphysics MEMS design tool show that the meso-channel with a diameter of 1000 μm and length of 20 mm can cause measurable pressure drop between the upstream and downstreams without altering the flow and therefore can be used as a flow resistor. Two piezoresistive MEMS pressure sensors are proposed to be installed at the upstream and downstream to measure the differential pressure and thus the gas flow rate. Further investigations on thin film silicon diaphragms with embedded piezoresistors for sensing the upstream and downstream pressures show that it is essential to employ thin diaphragms for pressure sensing in this application to achieve higher sensitivity with reasonably good linearity. However very thin diaphragms results in more non-linearity and are difficult to realize. Hence the authors have undertaken a study on perforated thick diaphragms for pressure sensing in piezoresistive MEMS pressure sensors for such applications. The IntelliSuite MEMS design tool has been used to create and analyze the performance of perforated diaphragm employed piezoresistive pressure sensors on 3 μm, 5 μm and 7 μm thick diaphragms each with different side lengths of 500 μm, 700 μm and 900 μm. The results show that it is possible to achieve more than 93% improvement in deflection sensitivity, more than 136% improvement in stress generation and 83% improvement in voltage sensitivity with 40 % perforated area irrespective of the thickness of the diaphragm. Empirical results on perforated diaphragms have been reported to be matching with COMSOL Multiphysics simulation results. Therefore the authors have simulated the perforated diaphragms studied in this work using COMSOL Multiphysics and compared with the IntelliSuite simulation results. The comparison confirms the validity of the results. A modified analytical model developed in this study for perforated diaphragm load–deflection performance shows that the simulation obtained for various pressure sensors employing perforated diaphragms in this study are accurate and valid. This leads to the conclusion that the perforation realized on thicker diaphragms are suitable alternatives with satisfactory performance to very thin non-perforated diaphragms. The flow using the piezoresistive pressure sensors employing perforated diaphragms for differential pressure measurement are found to be giving larger flow sensitivity than the 1differential flow sensors already reported in the literature. This work therefore demonstrates that it is possible to design micro-gas flow measurement system by differential pressure method using micro-pressure sensors with perforated diaphragms integrated with meso-channel." @default.
- W2059195763 created "2016-06-24" @default.
- W2059195763 creator A5012239592 @default.
- W2059195763 creator A5028225999 @default.
- W2059195763 creator A5053206353 @default.
- W2059195763 creator A5081065415 @default.
- W2059195763 date "2014-03-01" @default.
- W2059195763 modified "2023-10-16" @default.
- W2059195763 title "Perforated diaphragms employed piezoresistive MEMS pressure sensor for sensitivity enhancement in gas flow measurement" @default.
- W2059195763 cites W1972512875 @default.
- W2059195763 cites W1975631503 @default.
- W2059195763 cites W1982075763 @default.
- W2059195763 cites W1983893267 @default.
- W2059195763 cites W1986950669 @default.
- W2059195763 cites W1989589079 @default.
- W2059195763 cites W2008123309 @default.
- W2059195763 cites W2015789142 @default.
- W2059195763 cites W2019671707 @default.
- W2059195763 cites W2023344550 @default.
- W2059195763 cites W2024676329 @default.
- W2059195763 cites W2040804843 @default.
- W2059195763 cites W2051793518 @default.
- W2059195763 cites W2060244448 @default.
- W2059195763 cites W2061766490 @default.
- W2059195763 cites W2062730473 @default.
- W2059195763 cites W2064583904 @default.
- W2059195763 cites W2083078679 @default.
- W2059195763 cites W2083977715 @default.
- W2059195763 cites W2084067743 @default.
- W2059195763 cites W2089375317 @default.
- W2059195763 cites W2091077166 @default.
- W2059195763 cites W2093128681 @default.
- W2059195763 cites W2100167396 @default.
- W2059195763 cites W2104466237 @default.
- W2059195763 cites W2105241399 @default.
- W2059195763 cites W2110730280 @default.
- W2059195763 cites W2143673553 @default.
- W2059195763 cites W2144500335 @default.
- W2059195763 cites W2152549847 @default.
- W2059195763 cites W2160283079 @default.
- W2059195763 cites W2175506919 @default.
- W2059195763 doi "https://doi.org/10.1016/j.flowmeasinst.2013.12.004" @default.
- W2059195763 hasPublicationYear "2014" @default.
- W2059195763 type Work @default.
- W2059195763 sameAs 2059195763 @default.
- W2059195763 citedByCount "27" @default.
- W2059195763 countsByYear W20591957632015 @default.
- W2059195763 countsByYear W20591957632016 @default.
- W2059195763 countsByYear W20591957632017 @default.
- W2059195763 countsByYear W20591957632018 @default.
- W2059195763 countsByYear W20591957632019 @default.
- W2059195763 countsByYear W20591957632020 @default.
- W2059195763 countsByYear W20591957632021 @default.
- W2059195763 countsByYear W20591957632022 @default.
- W2059195763 countsByYear W20591957632023 @default.
- W2059195763 crossrefType "journal-article" @default.
- W2059195763 hasAuthorship W2059195763A5012239592 @default.
- W2059195763 hasAuthorship W2059195763A5028225999 @default.
- W2059195763 hasAuthorship W2059195763A5053206353 @default.
- W2059195763 hasAuthorship W2059195763A5081065415 @default.
- W2059195763 hasConcept C114088122 @default.
- W2059195763 hasConcept C119599485 @default.
- W2059195763 hasConcept C120665830 @default.
- W2059195763 hasConcept C121332964 @default.
- W2059195763 hasConcept C127413603 @default.
- W2059195763 hasConcept C135628077 @default.
- W2059195763 hasConcept C137488568 @default.
- W2059195763 hasConcept C157138929 @default.
- W2059195763 hasConcept C164292776 @default.
- W2059195763 hasConcept C165801399 @default.
- W2059195763 hasConcept C192562407 @default.
- W2059195763 hasConcept C198490522 @default.
- W2059195763 hasConcept C21200559 @default.
- W2059195763 hasConcept C24326235 @default.
- W2059195763 hasConcept C24890656 @default.
- W2059195763 hasConcept C2781355719 @default.
- W2059195763 hasConcept C37977207 @default.
- W2059195763 hasConcept C41325743 @default.
- W2059195763 hasConcept C46435376 @default.
- W2059195763 hasConcept C49040817 @default.
- W2059195763 hasConcept C57879066 @default.
- W2059195763 hasConcept C66938386 @default.
- W2059195763 hasConcept C77170095 @default.
- W2059195763 hasConcept C78519656 @default.
- W2059195763 hasConcept C80264047 @default.
- W2059195763 hasConceptScore W2059195763C114088122 @default.
- W2059195763 hasConceptScore W2059195763C119599485 @default.
- W2059195763 hasConceptScore W2059195763C120665830 @default.
- W2059195763 hasConceptScore W2059195763C121332964 @default.
- W2059195763 hasConceptScore W2059195763C127413603 @default.
- W2059195763 hasConceptScore W2059195763C135628077 @default.
- W2059195763 hasConceptScore W2059195763C137488568 @default.
- W2059195763 hasConceptScore W2059195763C157138929 @default.
- W2059195763 hasConceptScore W2059195763C164292776 @default.
- W2059195763 hasConceptScore W2059195763C165801399 @default.
- W2059195763 hasConceptScore W2059195763C192562407 @default.
- W2059195763 hasConceptScore W2059195763C198490522 @default.
- W2059195763 hasConceptScore W2059195763C21200559 @default.