Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059312110> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2059312110 endingPage "1802" @default.
- W2059312110 startingPage "1787" @default.
- W2059312110 abstract "A fundamental requirement for geostatistical analyses of spatially correlated environmental data is the estimation of the sample semivariogram to characterize spatial correlation. Selecting an underlying theoretical semivariogram based on the sample semivariogram is an extremely important and difficult task that is subject to a great deal of uncertainty. Current standard practice does not involve consideration of the confidence associated with semivariogram estimates, largely because classical statistical theory does not provide the capability to construct confidence limits from single realizations of correlated data, and multiple realizations of environmental fields are not found in nature. The jackknife method is a nonparametric statistical technique for parameter estimation that may be used to estimate the semivariogram. When used in connection with standard confidence procedures, it allows for the calculation of closely approximate confidence limits on the semivariogram from single realizations of spatially correlated data. The accuracy and validity of this technique was verified using a Monte Carlo simulation approach which enabled confidence limits about the semivariogram estimate to be calculated from many synthetically generated realizations of a random field with a known correlation structure. The synthetically derived confidence limits were then compared to jackknife estimates from single realizations with favorable results. Finally, the methodology for applying the jackknife method to a real‐world problem and an example of the utility of semivariogram confidence limits were demonstrated by constructing confidence limits on seasonal sample variograms of nitrate‐nitrogen concentrations in shallow groundwater in an approximately 12‐mi 2 (∼30 km 2 ) region in northern Illinois. In this application, the confidence limits on sample semivariograms from different time periods were used to evaluate the significance of temporal change in spatial correlation. This capability is quite important as it can indicate when a spatially optimized monitoring network would need to be reevaluated and thus lead to more robust monitoring strategies." @default.
- W2059312110 created "2016-06-24" @default.
- W2059312110 creator A5040776039 @default.
- W2059312110 creator A5067650309 @default.
- W2059312110 date "1990-08-01" @default.
- W2059312110 modified "2023-09-27" @default.
- W2059312110 title "Approximation of confidence limits on sample semivariograms from single realizations of spatially correlated random fields" @default.
- W2059312110 cites W137473625 @default.
- W2059312110 cites W137922527 @default.
- W2059312110 cites W150858883 @default.
- W2059312110 cites W187906118 @default.
- W2059312110 cites W1981980182 @default.
- W2059312110 cites W1984503138 @default.
- W2059312110 cites W1984714298 @default.
- W2059312110 cites W1987656037 @default.
- W2059312110 cites W2032585545 @default.
- W2059312110 cites W2033563201 @default.
- W2059312110 cites W2050150755 @default.
- W2059312110 cites W2060670786 @default.
- W2059312110 cites W2069172951 @default.
- W2059312110 cites W2071756977 @default.
- W2059312110 cites W2075300252 @default.
- W2059312110 cites W2076237237 @default.
- W2059312110 cites W2082423192 @default.
- W2059312110 cites W2104193490 @default.
- W2059312110 cites W2124181495 @default.
- W2059312110 cites W2129752419 @default.
- W2059312110 cites W2136890390 @default.
- W2059312110 cites W2141677110 @default.
- W2059312110 cites W2506620368 @default.
- W2059312110 cites W4230188648 @default.
- W2059312110 cites W4238714971 @default.
- W2059312110 doi "https://doi.org/10.1029/wr026i008p01787" @default.
- W2059312110 hasPublicationYear "1990" @default.
- W2059312110 type Work @default.
- W2059312110 sameAs 2059312110 @default.
- W2059312110 citedByCount "53" @default.
- W2059312110 countsByYear W20593121102015 @default.
- W2059312110 countsByYear W20593121102017 @default.
- W2059312110 countsByYear W20593121102018 @default.
- W2059312110 countsByYear W20593121102020 @default.
- W2059312110 countsByYear W20593121102022 @default.
- W2059312110 crossrefType "journal-article" @default.
- W2059312110 hasAuthorship W2059312110A5040776039 @default.
- W2059312110 hasAuthorship W2059312110A5067650309 @default.
- W2059312110 hasConcept C102366305 @default.
- W2059312110 hasConcept C105795698 @default.
- W2059312110 hasConcept C129848803 @default.
- W2059312110 hasConcept C154881674 @default.
- W2059312110 hasConcept C185429906 @default.
- W2059312110 hasConcept C185592680 @default.
- W2059312110 hasConcept C19499675 @default.
- W2059312110 hasConcept C198531522 @default.
- W2059312110 hasConcept C33923547 @default.
- W2059312110 hasConcept C43617362 @default.
- W2059312110 hasConcept C44249647 @default.
- W2059312110 hasConcept C81692654 @default.
- W2059312110 hasConcept C81790035 @default.
- W2059312110 hasConceptScore W2059312110C102366305 @default.
- W2059312110 hasConceptScore W2059312110C105795698 @default.
- W2059312110 hasConceptScore W2059312110C129848803 @default.
- W2059312110 hasConceptScore W2059312110C154881674 @default.
- W2059312110 hasConceptScore W2059312110C185429906 @default.
- W2059312110 hasConceptScore W2059312110C185592680 @default.
- W2059312110 hasConceptScore W2059312110C19499675 @default.
- W2059312110 hasConceptScore W2059312110C198531522 @default.
- W2059312110 hasConceptScore W2059312110C33923547 @default.
- W2059312110 hasConceptScore W2059312110C43617362 @default.
- W2059312110 hasConceptScore W2059312110C44249647 @default.
- W2059312110 hasConceptScore W2059312110C81692654 @default.
- W2059312110 hasConceptScore W2059312110C81790035 @default.
- W2059312110 hasIssue "8" @default.
- W2059312110 hasLocation W20593121101 @default.
- W2059312110 hasOpenAccess W2059312110 @default.
- W2059312110 hasPrimaryLocation W20593121101 @default.
- W2059312110 hasRelatedWork W1953289227 @default.
- W2059312110 hasRelatedWork W1991807905 @default.
- W2059312110 hasRelatedWork W2000970459 @default.
- W2059312110 hasRelatedWork W2023413586 @default.
- W2059312110 hasRelatedWork W2068330610 @default.
- W2059312110 hasRelatedWork W2286899332 @default.
- W2059312110 hasRelatedWork W2331814275 @default.
- W2059312110 hasRelatedWork W3145257140 @default.
- W2059312110 hasRelatedWork W3153658534 @default.
- W2059312110 hasRelatedWork W4300612916 @default.
- W2059312110 hasVolume "26" @default.
- W2059312110 isParatext "false" @default.
- W2059312110 isRetracted "false" @default.
- W2059312110 magId "2059312110" @default.
- W2059312110 workType "article" @default.