Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059397738> ?p ?o ?g. }
- W2059397738 endingPage "201" @default.
- W2059397738 startingPage "186" @default.
- W2059397738 abstract "Three surface complexation models (SCMs) developed for, respectively, ferrihydrite, goethite and sorption data for a Pleistocene oxidized aquifer sediment from Bangladesh were used to explore the effect of multicomponent adsorption processes on As mobility in a reduced Holocene floodplain aquifer along the Red River, Vietnam. The SCMs for ferrihydrite and goethite yielded very different results. The ferrihydrite SCM favors As(III) over As(V) and has carbonate and silica species as the main competitors for surface sites. In contrast, the goethite SCM has a greater affinity for As(V) over As(III) while PO43− and Fe(II) form the predominant surface species. The SCM for Pleistocene aquifer sediment resembles most the goethite SCM but shows more Si sorption. Compiled As(III) adsorption data for Holocene sediment was also well described by the SCM determined for Pleistocene aquifer sediment, suggesting a comparable As(III) affinity of Holocene and Pleistocene aquifer sediments. A forced gradient field experiment was conducted in a bank aquifer adjacent to a tributary channel to the Red River, and the passage in the aquifer of mixed groundwater containing up to 74% channel water was observed. The concentrations of As (<0.013 μM) and major ions in the channel water are low compared to those in the pristine groundwater in the adjacent bank aquifer, which had an As concentration of ∼3 μM. Calculations for conservative mixing of channel and groundwater could explain the observed variation in concentration for most elements. However, the mixed waters did contain an excess of As(III), PO43− and Si which is attributed to desorption from the aquifer sediment. The three SCMs were tested on their ability to model the desorption of As(III), PO43− and Si. Qualitatively, the ferrihydrite SCM correctly predicts desorption for As(III) but for Si and PO43− it predicts an increased adsorption instead of desorption. The goethite SCM correctly predicts desorption of both As(III) and PO43− but failed in the prediction of Si desorption. These results indicate that the prediction of As mobility, by using SCMs for synthetic Fe-oxides, will be strongly dependent on the model chosen. The SCM based on the Pleistocene aquifer sediment predicts the desorption of As(III), PO43− and Si quite superiorly, as compared to the SCMs for ferrihydrite and goethite, even though Si desorption is still somewhat under-predicted. The observation that a SCM calibrated on a different sediment can predict our field results so well suggests that sediment based SCMs may be a feasible way to model multi-component adsorption in aquifers." @default.
- W2059397738 created "2016-06-24" @default.
- W2059397738 creator A5005855691 @default.
- W2059397738 creator A5009069701 @default.
- W2059397738 creator A5019800495 @default.
- W2059397738 creator A5049024756 @default.
- W2059397738 creator A5049308682 @default.
- W2059397738 creator A5062042828 @default.
- W2059397738 creator A5068536944 @default.
- W2059397738 creator A5081486753 @default.
- W2059397738 creator A5084671242 @default.
- W2059397738 date "2012-12-01" @default.
- W2059397738 modified "2023-10-16" @default.
- W2059397738 title "Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam" @default.
- W2059397738 cites W1586092561 @default.
- W2059397738 cites W1975245159 @default.
- W2059397738 cites W1978895830 @default.
- W2059397738 cites W1981277022 @default.
- W2059397738 cites W1984726004 @default.
- W2059397738 cites W1987725309 @default.
- W2059397738 cites W1994335606 @default.
- W2059397738 cites W1994799581 @default.
- W2059397738 cites W1999235739 @default.
- W2059397738 cites W2001734169 @default.
- W2059397738 cites W2018677831 @default.
- W2059397738 cites W2028111940 @default.
- W2059397738 cites W2030615227 @default.
- W2059397738 cites W2034010900 @default.
- W2059397738 cites W2036122636 @default.
- W2059397738 cites W2039242149 @default.
- W2059397738 cites W2042380219 @default.
- W2059397738 cites W2042552267 @default.
- W2059397738 cites W2049788160 @default.
- W2059397738 cites W2054645658 @default.
- W2059397738 cites W2055002597 @default.
- W2059397738 cites W2056248221 @default.
- W2059397738 cites W2056783015 @default.
- W2059397738 cites W2060956009 @default.
- W2059397738 cites W2079744407 @default.
- W2059397738 cites W2080707688 @default.
- W2059397738 cites W2083322852 @default.
- W2059397738 cites W2084010989 @default.
- W2059397738 cites W2090356674 @default.
- W2059397738 cites W2091913250 @default.
- W2059397738 cites W2104247345 @default.
- W2059397738 cites W2106999615 @default.
- W2059397738 cites W2113068976 @default.
- W2059397738 cites W2116105765 @default.
- W2059397738 cites W2121511629 @default.
- W2059397738 cites W2122591311 @default.
- W2059397738 cites W2128753028 @default.
- W2059397738 cites W2133476129 @default.
- W2059397738 cites W2134307060 @default.
- W2059397738 cites W2142169267 @default.
- W2059397738 cites W2145436293 @default.
- W2059397738 cites W2149602337 @default.
- W2059397738 cites W2155933988 @default.
- W2059397738 cites W2163366584 @default.
- W2059397738 cites W2167437752 @default.
- W2059397738 cites W2168121572 @default.
- W2059397738 cites W2169926457 @default.
- W2059397738 cites W4234701903 @default.
- W2059397738 doi "https://doi.org/10.1016/j.gca.2012.07.014" @default.
- W2059397738 hasPublicationYear "2012" @default.
- W2059397738 type Work @default.
- W2059397738 sameAs 2059397738 @default.
- W2059397738 citedByCount "48" @default.
- W2059397738 countsByYear W20593977382013 @default.
- W2059397738 countsByYear W20593977382014 @default.
- W2059397738 countsByYear W20593977382015 @default.
- W2059397738 countsByYear W20593977382016 @default.
- W2059397738 countsByYear W20593977382017 @default.
- W2059397738 countsByYear W20593977382018 @default.
- W2059397738 countsByYear W20593977382019 @default.
- W2059397738 countsByYear W20593977382020 @default.
- W2059397738 countsByYear W20593977382021 @default.
- W2059397738 countsByYear W20593977382022 @default.
- W2059397738 countsByYear W20593977382023 @default.
- W2059397738 crossrefType "journal-article" @default.
- W2059397738 hasAuthorship W2059397738A5005855691 @default.
- W2059397738 hasAuthorship W2059397738A5009069701 @default.
- W2059397738 hasAuthorship W2059397738A5019800495 @default.
- W2059397738 hasAuthorship W2059397738A5049024756 @default.
- W2059397738 hasAuthorship W2059397738A5049308682 @default.
- W2059397738 hasAuthorship W2059397738A5062042828 @default.
- W2059397738 hasAuthorship W2059397738A5068536944 @default.
- W2059397738 hasAuthorship W2059397738A5081486753 @default.
- W2059397738 hasAuthorship W2059397738A5084671242 @default.
- W2059397738 hasConcept C114793014 @default.
- W2059397738 hasConcept C127313418 @default.
- W2059397738 hasConcept C150394285 @default.
- W2059397738 hasConcept C17409809 @default.
- W2059397738 hasConcept C178790620 @default.
- W2059397738 hasConcept C185592680 @default.
- W2059397738 hasConcept C187320778 @default.
- W2059397738 hasConcept C2777787761 @default.
- W2059397738 hasConcept C2780191927 @default.
- W2059397738 hasConcept C2816523 @default.