Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059480981> ?p ?o ?g. }
- W2059480981 endingPage "31913" @default.
- W2059480981 startingPage "31902" @default.
- W2059480981 abstract "The enzyme γ-glutamyltranspeptidase 1 (GGT1) is a conserved member of the N-terminal nucleophile hydrolase family that cleaves the γ-glutamyl bond of glutathione and other γ-glutamyl compounds. In animals, GGT1 is expressed on the surface of the cell and has critical roles in maintaining cysteine levels in the body and regulating intracellular redox status. Expression of GGT1 has been implicated as a potentiator of asthma, cardiovascular disease, and cancer. The rational design of effective inhibitors of human GGT1 (hGGT1) has been delayed by the lack of a reliable structural model. The available crystal structures of several bacterial GGTs have been of limited use due to differences in the catalytic behavior of bacterial and mammalian GGTs. We report the high resolution (1.67 Å) crystal structure of glutamate-bound hGGT1, the first of any eukaryotic GGT. Comparisons of the active site architecture of hGGT1 with those of its bacterial orthologs highlight key differences in the residues responsible for substrate binding, including a bimodal switch in the orientation of the catalytic nucleophile (Thr-381) that is unique to the human enzyme. Compared with several bacterial counterparts, the lid loop in the crystal structure of hGGT1 adopts an open conformation that allows greater access to the active site. The hGGT1 structure also revealed tightly bound chlorides near the catalytic residue that may contribute to catalytic activity. These are absent in the bacterial GGTs. These differences between bacterial and mammalian GGTs and the new structural data will accelerate the development of new therapies for GGT1-dependent diseases.Background: Human γ-glutamyltranspeptidase 1 (hGGT1) is a key enzyme in cysteine metabolism and several diseases.Results: We obtained the high resolution crystal structure of hGGT1.Conclusion: The structure reveals the molecular basis for differences between the human and bacterial enzymes in autoprocessing and catalytic activity.Significance: The structure provides a template for the structure-based design of therapeutic inhibitors of hGGT1. The enzyme γ-glutamyltranspeptidase 1 (GGT1) is a conserved member of the N-terminal nucleophile hydrolase family that cleaves the γ-glutamyl bond of glutathione and other γ-glutamyl compounds. In animals, GGT1 is expressed on the surface of the cell and has critical roles in maintaining cysteine levels in the body and regulating intracellular redox status. Expression of GGT1 has been implicated as a potentiator of asthma, cardiovascular disease, and cancer. The rational design of effective inhibitors of human GGT1 (hGGT1) has been delayed by the lack of a reliable structural model. The available crystal structures of several bacterial GGTs have been of limited use due to differences in the catalytic behavior of bacterial and mammalian GGTs. We report the high resolution (1.67 Å) crystal structure of glutamate-bound hGGT1, the first of any eukaryotic GGT. Comparisons of the active site architecture of hGGT1 with those of its bacterial orthologs highlight key differences in the residues responsible for substrate binding, including a bimodal switch in the orientation of the catalytic nucleophile (Thr-381) that is unique to the human enzyme. Compared with several bacterial counterparts, the lid loop in the crystal structure of hGGT1 adopts an open conformation that allows greater access to the active site. The hGGT1 structure also revealed tightly bound chlorides near the catalytic residue that may contribute to catalytic activity. These are absent in the bacterial GGTs. These differences between bacterial and mammalian GGTs and the new structural data will accelerate the development of new therapies for GGT1-dependent diseases. Background: Human γ-glutamyltranspeptidase 1 (hGGT1) is a key enzyme in cysteine metabolism and several diseases. Results: We obtained the high resolution crystal structure of hGGT1. Conclusion: The structure reveals the molecular basis for differences between the human and bacterial enzymes in autoprocessing and catalytic activity. Significance: The structure provides a template for the structure-based design of therapeutic inhibitors of hGGT1. Novel insights into eukaryotic γ-glutamyltranspeptidase 1 from the crystal structure of the glutamate-bound human enzyme.Journal of Biological ChemistryVol. 289Issue 16PreviewVOLUME 288 (2013) PAGES 31902–31913 Full-Text PDF Open Access" @default.
- W2059480981 created "2016-06-24" @default.
- W2059480981 creator A5008358026 @default.
- W2059480981 creator A5036820947 @default.
- W2059480981 creator A5042020819 @default.
- W2059480981 creator A5055253170 @default.
- W2059480981 creator A5069013483 @default.
- W2059480981 creator A5078186612 @default.
- W2059480981 creator A5086141649 @default.
- W2059480981 date "2013-11-01" @default.
- W2059480981 modified "2023-10-17" @default.
- W2059480981 title "Novel Insights into Eukaryotic γ-Glutamyltranspeptidase 1 from the Crystal Structure of the Glutamate-bound Human Enzyme" @default.
- W2059480981 cites W1486511269 @default.
- W2059480981 cites W1494935948 @default.
- W2059480981 cites W1578341309 @default.
- W2059480981 cites W1633567371 @default.
- W2059480981 cites W1827148040 @default.
- W2059480981 cites W1851754790 @default.
- W2059480981 cites W1966901153 @default.
- W2059480981 cites W1979840983 @default.
- W2059480981 cites W1985629904 @default.
- W2059480981 cites W1985811656 @default.
- W2059480981 cites W1989344941 @default.
- W2059480981 cites W1995526037 @default.
- W2059480981 cites W1998265132 @default.
- W2059480981 cites W2006373747 @default.
- W2059480981 cites W2008631075 @default.
- W2059480981 cites W2008708467 @default.
- W2059480981 cites W2011658408 @default.
- W2059480981 cites W2015647734 @default.
- W2059480981 cites W2019381912 @default.
- W2059480981 cites W2020091120 @default.
- W2059480981 cites W2026565672 @default.
- W2059480981 cites W2035503835 @default.
- W2059480981 cites W2036548981 @default.
- W2059480981 cites W2038091844 @default.
- W2059480981 cites W2042792520 @default.
- W2059480981 cites W2043906385 @default.
- W2059480981 cites W2044430464 @default.
- W2059480981 cites W2053448808 @default.
- W2059480981 cites W2053715143 @default.
- W2059480981 cites W2060810897 @default.
- W2059480981 cites W2063268578 @default.
- W2059480981 cites W2067337056 @default.
- W2059480981 cites W2069348062 @default.
- W2059480981 cites W2072683805 @default.
- W2059480981 cites W2074473216 @default.
- W2059480981 cites W2076837930 @default.
- W2059480981 cites W2077878765 @default.
- W2059480981 cites W2090792051 @default.
- W2059480981 cites W2095210131 @default.
- W2059480981 cites W2101973479 @default.
- W2059480981 cites W2106882534 @default.
- W2059480981 cites W2108198026 @default.
- W2059480981 cites W2109034393 @default.
- W2059480981 cites W2121437105 @default.
- W2059480981 cites W2124026197 @default.
- W2059480981 cites W2146080841 @default.
- W2059480981 cites W2146122808 @default.
- W2059480981 cites W2154714625 @default.
- W2059480981 cites W2161791938 @default.
- W2059480981 cites W2180229411 @default.
- W2059480981 cites W2401693717 @default.
- W2059480981 cites W4248872320 @default.
- W2059480981 doi "https://doi.org/10.1074/jbc.m113.498139" @default.
- W2059480981 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4036294" @default.
- W2059480981 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24047895" @default.
- W2059480981 hasPublicationYear "2013" @default.
- W2059480981 type Work @default.
- W2059480981 sameAs 2059480981 @default.
- W2059480981 citedByCount "66" @default.
- W2059480981 countsByYear W20594809812014 @default.
- W2059480981 countsByYear W20594809812015 @default.
- W2059480981 countsByYear W20594809812016 @default.
- W2059480981 countsByYear W20594809812017 @default.
- W2059480981 countsByYear W20594809812018 @default.
- W2059480981 countsByYear W20594809812019 @default.
- W2059480981 countsByYear W20594809812020 @default.
- W2059480981 countsByYear W20594809812021 @default.
- W2059480981 countsByYear W20594809812022 @default.
- W2059480981 countsByYear W20594809812023 @default.
- W2059480981 crossrefType "journal-article" @default.
- W2059480981 hasAuthorship W2059480981A5008358026 @default.
- W2059480981 hasAuthorship W2059480981A5036820947 @default.
- W2059480981 hasAuthorship W2059480981A5042020819 @default.
- W2059480981 hasAuthorship W2059480981A5055253170 @default.
- W2059480981 hasAuthorship W2059480981A5069013483 @default.
- W2059480981 hasAuthorship W2059480981A5078186612 @default.
- W2059480981 hasAuthorship W2059480981A5086141649 @default.
- W2059480981 hasBestOaLocation W20594809811 @default.
- W2059480981 hasConcept C107824862 @default.
- W2059480981 hasConcept C181199279 @default.
- W2059480981 hasConcept C185592680 @default.
- W2059480981 hasConcept C2779201268 @default.
- W2059480981 hasConcept C2780120296 @default.
- W2059480981 hasConcept C41183919 @default.
- W2059480981 hasConcept C55493867 @default.
- W2059480981 hasConcept C71240020 @default.