Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059536461> ?p ?o ?g. }
- W2059536461 endingPage "187" @default.
- W2059536461 startingPage "177" @default.
- W2059536461 abstract "A novel face recognition algorithm based on Gabor texture information is proposed in this paper. Two kinds of strategies to capture it are introduced: Gabor magnitude-based texture representation (GMTR) and Gabor phase-based texture representation (GPTR). Specifically, GMTR is characterized by using the Gamma density (Γ D) to model the Gabor magnitude distribution, while GPTR is characterized by using the generalized Gaussian density (GGD) to model the Gabor phase distribution. The estimated model parameters serve as texture representation. Experiments are performed on Yale, ORL and FERET databases to validate the feasibility of the proposed method. The results show that the proposed GMTR-based and GPTR-based NLDA both significantly outperform the widely used Gabor features-based NLDA and other existing subspace methods. In addition, the feature level fusion of these two kinds of texture representations performs better than them individually." @default.
- W2059536461 created "2016-06-24" @default.
- W2059536461 creator A5037373363 @default.
- W2059536461 creator A5051987502 @default.
- W2059536461 creator A5082827135 @default.
- W2059536461 date "2010-01-01" @default.
- W2059536461 modified "2023-10-05" @default.
- W2059536461 title "Gabor texture representation method for face recognition using the Gamma and generalized Gaussian models" @default.
- W2059536461 cites W1545641654 @default.
- W2059536461 cites W1761337995 @default.
- W2059536461 cites W1968590503 @default.
- W2059536461 cites W1969206936 @default.
- W2059536461 cites W2006500012 @default.
- W2059536461 cites W2010558924 @default.
- W2059536461 cites W2011503867 @default.
- W2059536461 cites W2017671889 @default.
- W2059536461 cites W2031802401 @default.
- W2059536461 cites W2033419168 @default.
- W2059536461 cites W2049694710 @default.
- W2059536461 cites W2053084419 @default.
- W2059536461 cites W2054891869 @default.
- W2059536461 cites W2061096125 @default.
- W2059536461 cites W2088900896 @default.
- W2059536461 cites W2095757522 @default.
- W2059536461 cites W2098947662 @default.
- W2059536461 cites W2102796633 @default.
- W2059536461 cites W2109647201 @default.
- W2059536461 cites W2117553576 @default.
- W2059536461 cites W2120954940 @default.
- W2059536461 cites W2121647436 @default.
- W2059536461 cites W2125148312 @default.
- W2059536461 cites W2126461877 @default.
- W2059536461 cites W2128716185 @default.
- W2059536461 cites W2130982917 @default.
- W2059536461 cites W2138137807 @default.
- W2059536461 cites W2138584058 @default.
- W2059536461 cites W2162520685 @default.
- W2059536461 cites W2163534628 @default.
- W2059536461 cites W2165731615 @default.
- W2059536461 cites W2789848387 @default.
- W2059536461 doi "https://doi.org/10.1016/j.imavis.2009.05.012" @default.
- W2059536461 hasPublicationYear "2010" @default.
- W2059536461 type Work @default.
- W2059536461 sameAs 2059536461 @default.
- W2059536461 citedByCount "44" @default.
- W2059536461 countsByYear W20595364612012 @default.
- W2059536461 countsByYear W20595364612013 @default.
- W2059536461 countsByYear W20595364612014 @default.
- W2059536461 countsByYear W20595364612015 @default.
- W2059536461 countsByYear W20595364612016 @default.
- W2059536461 countsByYear W20595364612017 @default.
- W2059536461 countsByYear W20595364612018 @default.
- W2059536461 countsByYear W20595364612019 @default.
- W2059536461 countsByYear W20595364612020 @default.
- W2059536461 countsByYear W20595364612022 @default.
- W2059536461 countsByYear W20595364612023 @default.
- W2059536461 crossrefType "journal-article" @default.
- W2059536461 hasAuthorship W2059536461A5037373363 @default.
- W2059536461 hasAuthorship W2059536461A5051987502 @default.
- W2059536461 hasAuthorship W2059536461A5082827135 @default.
- W2059536461 hasConcept C115961682 @default.
- W2059536461 hasConcept C121332964 @default.
- W2059536461 hasConcept C136902061 @default.
- W2059536461 hasConcept C138885662 @default.
- W2059536461 hasConcept C144024400 @default.
- W2059536461 hasConcept C153180895 @default.
- W2059536461 hasConcept C154945302 @default.
- W2059536461 hasConcept C163716315 @default.
- W2059536461 hasConcept C17744445 @default.
- W2059536461 hasConcept C196216189 @default.
- W2059536461 hasConcept C199539241 @default.
- W2059536461 hasConcept C2776359362 @default.
- W2059536461 hasConcept C2776401178 @default.
- W2059536461 hasConcept C2779304628 @default.
- W2059536461 hasConcept C2781195486 @default.
- W2059536461 hasConcept C31510193 @default.
- W2059536461 hasConcept C31972630 @default.
- W2059536461 hasConcept C32834561 @default.
- W2059536461 hasConcept C33923547 @default.
- W2059536461 hasConcept C36289849 @default.
- W2059536461 hasConcept C41008148 @default.
- W2059536461 hasConcept C41895202 @default.
- W2059536461 hasConcept C46286280 @default.
- W2059536461 hasConcept C47432892 @default.
- W2059536461 hasConcept C62520636 @default.
- W2059536461 hasConcept C94625758 @default.
- W2059536461 hasConceptScore W2059536461C115961682 @default.
- W2059536461 hasConceptScore W2059536461C121332964 @default.
- W2059536461 hasConceptScore W2059536461C136902061 @default.
- W2059536461 hasConceptScore W2059536461C138885662 @default.
- W2059536461 hasConceptScore W2059536461C144024400 @default.
- W2059536461 hasConceptScore W2059536461C153180895 @default.
- W2059536461 hasConceptScore W2059536461C154945302 @default.
- W2059536461 hasConceptScore W2059536461C163716315 @default.
- W2059536461 hasConceptScore W2059536461C17744445 @default.
- W2059536461 hasConceptScore W2059536461C196216189 @default.
- W2059536461 hasConceptScore W2059536461C199539241 @default.
- W2059536461 hasConceptScore W2059536461C2776359362 @default.