Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059607411> ?p ?o ?g. }
- W2059607411 endingPage "11" @default.
- W2059607411 startingPage "1" @default.
- W2059607411 abstract "Carbon capture and storage (CCS) is one of the potential options for mitigating global climate warming. This process can capture the CO2 released during industrial processes and store it deep in geological sites. However, there is a possible risk that the CO2 might leak from underground. Therefore, detecting sites of CO2 leakage is important for the safety and success of CCS projects. The remote sensing of plants offers the potential to identify locations of CO2 leakage from the spectral responses of the plants growing on the surface of sequestration fields. A field experiment was performed at the Sutton Bonington campus of University of Nottingham (52.8N, 1.2W) that aimed to study the spectral characteristics of maize (Zea mays L.), beetroot (Beta vulgaris L.), cabbage (Brassica oleracea L.), lettuce (Lactuca sativa L.) and bean (Phaseolus vulgaris L.) under CO2 leakage and waterlogging stress conditions, to develop a new method for distinguishing between species growing under CO2 leakage and waterlogging stresses, and to determine which plant was most sensitive to CO2 leakage stress. Leaf spectra were measured and processed using smoothing, continuum removal and first-derivative methods. For maize, cabbage, lettuce and bean, as the severity of CO2 leakage stress increased, the areas of the 510–545 nm regions of the first-derivative spectral curves increased, and those of the 690–750 nm regions decreased compared with the controls. However, for beetroot, the area of the 510–545 nm region of the first-derivative spectral curve decreased, and that of the 690–750 nm region increased compared with the control. When exposed to waterlogging stress, the areas of both the 510–545 nm and the 690–750 nm regions of the first-derivative spectral curves decreased compared with the controls for all 5 species examined. The areas of the 510–545 nm and 690–750 nm regions of the first-derivative spectral curves were named the AREAgreen and AREAred, respectively. Furthermore, the AREAred/AREAgreen ratio was able to effectively identify the species exposed to CO2 leakage stress, and the product of AREAred × AREAgreen accurately identified the species under waterlogging stress. These results suggest that the spectral responses of plants to CO2 leakage and waterlogging stresses are different and that the AREAred/AREAgreen and AREAred × AREAgreen indices can effectively distinguish the treated plants and the control plants, respectively. Cabbage is the most sensitive of the examined species to the CO2 leakage stress, followed by maize, beetroot and lettuce, and then bean, the least sensitive plant species. This experiment suggests that leaf reflectance can be adopted to detect plants that grow in regions of high soil CO2 leakage; moreover, the species’ responses to CO2 leakage stress and waterlogging stress can be differentiated. Nevertheless, to accurately detect locations of CO2 leakage in fields and determining whether the models are suitable for airborne or satellite data, large-scale field experiments must also be performed in the near future." @default.
- W2059607411 created "2016-06-24" @default.
- W2059607411 creator A5037236993 @default.
- W2059607411 creator A5042359950 @default.
- W2059607411 creator A5044321404 @default.
- W2059607411 creator A5057231199 @default.
- W2059607411 creator A5066465960 @default.
- W2059607411 creator A5073263572 @default.
- W2059607411 date "2015-06-01" @default.
- W2059607411 modified "2023-09-27" @default.
- W2059607411 title "Identifying the spectral responses of several plant species under CO2 leakage and waterlogging stresses" @default.
- W2059607411 cites W1487726742 @default.
- W2059607411 cites W1954525867 @default.
- W2059607411 cites W1966712988 @default.
- W2059607411 cites W1968032445 @default.
- W2059607411 cites W1968894504 @default.
- W2059607411 cites W1969177710 @default.
- W2059607411 cites W1969272053 @default.
- W2059607411 cites W1975909744 @default.
- W2059607411 cites W1977391888 @default.
- W2059607411 cites W1982353654 @default.
- W2059607411 cites W1984296708 @default.
- W2059607411 cites W1994345372 @default.
- W2059607411 cites W1995613292 @default.
- W2059607411 cites W1997186925 @default.
- W2059607411 cites W2004297270 @default.
- W2059607411 cites W2021938615 @default.
- W2059607411 cites W2024480165 @default.
- W2059607411 cites W2025725700 @default.
- W2059607411 cites W2028938077 @default.
- W2059607411 cites W2035587516 @default.
- W2059607411 cites W2046848897 @default.
- W2059607411 cites W2057985612 @default.
- W2059607411 cites W2063327011 @default.
- W2059607411 cites W2066072191 @default.
- W2059607411 cites W2071569488 @default.
- W2059607411 cites W2074430415 @default.
- W2059607411 cites W2075697760 @default.
- W2059607411 cites W2077031068 @default.
- W2059607411 cites W2082395376 @default.
- W2059607411 cites W2083955053 @default.
- W2059607411 cites W2093555585 @default.
- W2059607411 cites W2094445009 @default.
- W2059607411 cites W2094836218 @default.
- W2059607411 cites W2095132924 @default.
- W2059607411 cites W2096996101 @default.
- W2059607411 cites W2120060138 @default.
- W2059607411 cites W2147390122 @default.
- W2059607411 cites W2148591750 @default.
- W2059607411 cites W2166665947 @default.
- W2059607411 doi "https://doi.org/10.1016/j.ijggc.2015.01.016" @default.
- W2059607411 hasPublicationYear "2015" @default.
- W2059607411 type Work @default.
- W2059607411 sameAs 2059607411 @default.
- W2059607411 citedByCount "12" @default.
- W2059607411 countsByYear W20596074112017 @default.
- W2059607411 countsByYear W20596074112020 @default.
- W2059607411 countsByYear W20596074112021 @default.
- W2059607411 countsByYear W20596074112022 @default.
- W2059607411 countsByYear W20596074112023 @default.
- W2059607411 crossrefType "journal-article" @default.
- W2059607411 hasAuthorship W2059607411A5037236993 @default.
- W2059607411 hasAuthorship W2059607411A5042359950 @default.
- W2059607411 hasAuthorship W2059607411A5044321404 @default.
- W2059607411 hasAuthorship W2059607411A5057231199 @default.
- W2059607411 hasAuthorship W2059607411A5066465960 @default.
- W2059607411 hasAuthorship W2059607411A5073263572 @default.
- W2059607411 hasConcept C139719470 @default.
- W2059607411 hasConcept C144027150 @default.
- W2059607411 hasConcept C162324750 @default.
- W2059607411 hasConcept C185592680 @default.
- W2059607411 hasConcept C18903297 @default.
- W2059607411 hasConcept C197321923 @default.
- W2059607411 hasConcept C202583358 @default.
- W2059607411 hasConcept C2776286235 @default.
- W2059607411 hasConcept C2777042071 @default.
- W2059607411 hasConcept C2778343920 @default.
- W2059607411 hasConcept C39432304 @default.
- W2059607411 hasConcept C59822182 @default.
- W2059607411 hasConcept C6557445 @default.
- W2059607411 hasConcept C67715294 @default.
- W2059607411 hasConcept C86803240 @default.
- W2059607411 hasConceptScore W2059607411C139719470 @default.
- W2059607411 hasConceptScore W2059607411C144027150 @default.
- W2059607411 hasConceptScore W2059607411C162324750 @default.
- W2059607411 hasConceptScore W2059607411C185592680 @default.
- W2059607411 hasConceptScore W2059607411C18903297 @default.
- W2059607411 hasConceptScore W2059607411C197321923 @default.
- W2059607411 hasConceptScore W2059607411C202583358 @default.
- W2059607411 hasConceptScore W2059607411C2776286235 @default.
- W2059607411 hasConceptScore W2059607411C2777042071 @default.
- W2059607411 hasConceptScore W2059607411C2778343920 @default.
- W2059607411 hasConceptScore W2059607411C39432304 @default.
- W2059607411 hasConceptScore W2059607411C59822182 @default.
- W2059607411 hasConceptScore W2059607411C6557445 @default.
- W2059607411 hasConceptScore W2059607411C67715294 @default.
- W2059607411 hasConceptScore W2059607411C86803240 @default.
- W2059607411 hasFunder F4320321001 @default.