Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059619493> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2059619493 abstract "One of the fundamental challenges of clustering is how to evaluate, without auxiliary information, to what extent the obtained clusters fit the natural partitions of the data s et. A common approach for evaluation of clustering results is to use validity indices. We propose a new validity index, Conn Index, for prototype based clustering. Conn Index is applicable to data sets with a wide variety of cluster characteristics (di fferent shapes, sizes, densities, overlaps). We construct Conn Index based on inter- and intra-cluster connectivities of prototypes, which are found through a weighted Delaunay triangulation called connectivity matrix (1), where the weights indicate the data distribution. We compare the performance of Conn Index to commonly used indices on synthetic and real data sets. I. I NTRODUCTION Clustering means splitting a data set into groups such that the data samples within a group are more similar to each other than to the data samples in other groups. Clustering is done with many methods which can be categorized in several ways where the two major ones are partitioning and hierarchical clustering. For any method, clustering the da ta directly becomes computationally heavy as the size of the data set increases. In order to significantly reduce the com- putational cost, two-step algorithms have been proposed (2), (3), (4), (5). Two-step algorithms (prototype based cluste ring) first find the quantization prototypes of data, and then clust er the prototypes. Using the prototypes instead of data can also reduce noise because the prototypes are the local averages of the data. A widely and successfully used neural paradigm for find- ing prototypes is the Self-Organizing Map (SOM). The SOM is a spatially ordered quantization of a data space where the quantization prototypes are adaptively determined for optimal approximation of the (unknown) distribution of the data. The SOM also facilitates visualization of the structu re of a higher-dimensional data space in one or two dimensions, which can guide semi-manual clustering. Thus, the SOM is a powerful aid in capturing clusters in high-dimensional intricate data sets (1), (2), (3), (6). With any clustering method, whether clustering the data itself or its prototypes, the main problems are to determine the number of clusters and to evaluate the validity of the clusters. A validity measure of the clustering ideally show s" @default.
- W2059619493 created "2016-06-24" @default.
- W2059619493 creator A5009569707 @default.
- W2059619493 creator A5065386286 @default.
- W2059619493 date "2007-01-01" @default.
- W2059619493 modified "2023-09-23" @default.
- W2059619493 title "A new cluster validity index for prototype based clustering algorithms based on inter- and intra-cluster density" @default.
- W2059619493 cites W1517516770 @default.
- W2059619493 cites W1596537840 @default.
- W2059619493 cites W1975152892 @default.
- W2059619493 cites W1988497044 @default.
- W2059619493 cites W1996747841 @default.
- W2059619493 cites W2003078486 @default.
- W2059619493 cites W2029064186 @default.
- W2059619493 cites W2051224630 @default.
- W2059619493 cites W2053677366 @default.
- W2059619493 cites W2103704311 @default.
- W2059619493 cites W2110802877 @default.
- W2059619493 cites W2141585940 @default.
- W2059619493 cites W2171975443 @default.
- W2059619493 cites W91446783 @default.
- W2059619493 doi "https://doi.org/10.1109/ijcnn.2007.4371300" @default.
- W2059619493 hasPublicationYear "2007" @default.
- W2059619493 type Work @default.
- W2059619493 sameAs 2059619493 @default.
- W2059619493 citedByCount "17" @default.
- W2059619493 countsByYear W20596194932012 @default.
- W2059619493 countsByYear W20596194932013 @default.
- W2059619493 countsByYear W20596194932018 @default.
- W2059619493 countsByYear W20596194932019 @default.
- W2059619493 countsByYear W20596194932020 @default.
- W2059619493 countsByYear W20596194932021 @default.
- W2059619493 crossrefType "proceedings-article" @default.
- W2059619493 hasAuthorship W2059619493A5009569707 @default.
- W2059619493 hasAuthorship W2059619493A5065386286 @default.
- W2059619493 hasConcept C11413529 @default.
- W2059619493 hasConcept C124101348 @default.
- W2059619493 hasConcept C136764020 @default.
- W2059619493 hasConcept C154945302 @default.
- W2059619493 hasConcept C164866538 @default.
- W2059619493 hasConcept C199360897 @default.
- W2059619493 hasConcept C2777382242 @default.
- W2059619493 hasConcept C41008148 @default.
- W2059619493 hasConcept C73555534 @default.
- W2059619493 hasConceptScore W2059619493C11413529 @default.
- W2059619493 hasConceptScore W2059619493C124101348 @default.
- W2059619493 hasConceptScore W2059619493C136764020 @default.
- W2059619493 hasConceptScore W2059619493C154945302 @default.
- W2059619493 hasConceptScore W2059619493C164866538 @default.
- W2059619493 hasConceptScore W2059619493C199360897 @default.
- W2059619493 hasConceptScore W2059619493C2777382242 @default.
- W2059619493 hasConceptScore W2059619493C41008148 @default.
- W2059619493 hasConceptScore W2059619493C73555534 @default.
- W2059619493 hasLocation W20596194931 @default.
- W2059619493 hasOpenAccess W2059619493 @default.
- W2059619493 hasPrimaryLocation W20596194931 @default.
- W2059619493 hasRelatedWork W1867102173 @default.
- W2059619493 hasRelatedWork W1963729455 @default.
- W2059619493 hasRelatedWork W1999627569 @default.
- W2059619493 hasRelatedWork W2361925972 @default.
- W2059619493 hasRelatedWork W2380798983 @default.
- W2059619493 hasRelatedWork W2385529442 @default.
- W2059619493 hasRelatedWork W2781999953 @default.
- W2059619493 hasRelatedWork W2888523397 @default.
- W2059619493 hasRelatedWork W3097684051 @default.
- W2059619493 hasRelatedWork W763609066 @default.
- W2059619493 isParatext "false" @default.
- W2059619493 isRetracted "false" @default.
- W2059619493 magId "2059619493" @default.
- W2059619493 workType "article" @default.