Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059664105> ?p ?o ?g. }
- W2059664105 endingPage "013013" @default.
- W2059664105 startingPage "013013" @default.
- W2059664105 abstract "We investigate the use of different trabecular bone descriptors and advanced machine learning techniques to complement standard bone mineral density (BMD) measures derived from dual-energy x-ray absorptiometry (DXA) for improving clinical assessment of osteoporotic fracture risk. For this purpose, volumes of interest were extracted from the head, neck, and trochanter of 146 ex vivo proximal femur specimens on multidetector computer tomography. The trabecular bone captured was characterized with (1) statistical moments of the BMD distribution, (2) geometrical features derived from the scaling index method (SIM), and (3) morphometric parameters, such as bone fraction, trabecular thickness, etc. Feature sets comprising DXA BMD and such supplemental features were used to predict the failure load (FL) of the specimens, previously determined through biomechanical testing, with multiregression and support vector regression. Prediction performance was measured by the root mean square error (RMSE); correlation with measured FL was evaluated using the coefficient of determination R 2 . The best prediction performance was achieved by a combination of DXA BMD and SIM-derived geometric features derived from the femoral head (RMSE: 0.869±0.121 , R 2 : 0.68±0.079 ), which was significantly better than DXA BMD alone (RMSE: 0.948±0.119 , R 2 : 0.61±0.101 ) (p<10 −4 ). For multivariate feature sets, SVR outperformed multiregression (p<0.05 ). These results suggest that supplementing standard DXA BMD measurements with sophisticated femoral trabecular bone characterization and supervised learning techniques can significantly improve biomechanical strength prediction in proximal femur specimens." @default.
- W2059664105 created "2016-06-24" @default.
- W2059664105 creator A5007975327 @default.
- W2059664105 creator A5017779420 @default.
- W2059664105 creator A5019292637 @default.
- W2059664105 creator A5031389462 @default.
- W2059664105 creator A5032121938 @default.
- W2059664105 creator A5036396088 @default.
- W2059664105 creator A5043462798 @default.
- W2059664105 creator A5049846775 @default.
- W2059664105 creator A5055906046 @default.
- W2059664105 creator A5070725191 @default.
- W2059664105 creator A5090133386 @default.
- W2059664105 date "2014-02-04" @default.
- W2059664105 modified "2023-10-16" @default.
- W2059664105 title "Improving bone strength prediction in human proximal femur specimens through geometrical characterization of trabecular bone microarchitecture and support vector regression" @default.
- W2059664105 cites W1967039005 @default.
- W2059664105 cites W1970954435 @default.
- W2059664105 cites W1976298284 @default.
- W2059664105 cites W1985184665 @default.
- W2059664105 cites W1992567157 @default.
- W2059664105 cites W1997680443 @default.
- W2059664105 cites W1997914083 @default.
- W2059664105 cites W1999667492 @default.
- W2059664105 cites W2001468998 @default.
- W2059664105 cites W2003572920 @default.
- W2059664105 cites W2014519035 @default.
- W2059664105 cites W2017076523 @default.
- W2059664105 cites W2018546811 @default.
- W2059664105 cites W2024790311 @default.
- W2059664105 cites W2035932745 @default.
- W2059664105 cites W2038990885 @default.
- W2059664105 cites W2050666211 @default.
- W2059664105 cites W2057096224 @default.
- W2059664105 cites W2060603670 @default.
- W2059664105 cites W2078197889 @default.
- W2059664105 cites W2087378917 @default.
- W2059664105 cites W2089472512 @default.
- W2059664105 cites W2091657164 @default.
- W2059664105 cites W2103961356 @default.
- W2059664105 cites W2107347773 @default.
- W2059664105 cites W2114344041 @default.
- W2059664105 cites W2119821739 @default.
- W2059664105 cites W2120490103 @default.
- W2059664105 cites W2122906075 @default.
- W2059664105 cites W2125806317 @default.
- W2059664105 cites W2138030043 @default.
- W2059664105 cites W2144184993 @default.
- W2059664105 cites W2153719448 @default.
- W2059664105 cites W2161920802 @default.
- W2059664105 cites W2171562225 @default.
- W2059664105 cites W4230534939 @default.
- W2059664105 cites W4252278281 @default.
- W2059664105 doi "https://doi.org/10.1117/1.jei.23.1.013013" @default.
- W2059664105 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4030629" @default.
- W2059664105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24860245" @default.
- W2059664105 hasPublicationYear "2014" @default.
- W2059664105 type Work @default.
- W2059664105 sameAs 2059664105 @default.
- W2059664105 citedByCount "22" @default.
- W2059664105 countsByYear W20596641052013 @default.
- W2059664105 countsByYear W20596641052014 @default.
- W2059664105 countsByYear W20596641052016 @default.
- W2059664105 countsByYear W20596641052017 @default.
- W2059664105 countsByYear W20596641052018 @default.
- W2059664105 countsByYear W20596641052019 @default.
- W2059664105 countsByYear W20596641052020 @default.
- W2059664105 countsByYear W20596641052021 @default.
- W2059664105 countsByYear W20596641052022 @default.
- W2059664105 countsByYear W20596641052023 @default.
- W2059664105 crossrefType "journal-article" @default.
- W2059664105 hasAuthorship W2059664105A5007975327 @default.
- W2059664105 hasAuthorship W2059664105A5017779420 @default.
- W2059664105 hasAuthorship W2059664105A5019292637 @default.
- W2059664105 hasAuthorship W2059664105A5031389462 @default.
- W2059664105 hasAuthorship W2059664105A5032121938 @default.
- W2059664105 hasAuthorship W2059664105A5036396088 @default.
- W2059664105 hasAuthorship W2059664105A5043462798 @default.
- W2059664105 hasAuthorship W2059664105A5049846775 @default.
- W2059664105 hasAuthorship W2059664105A5055906046 @default.
- W2059664105 hasAuthorship W2059664105A5070725191 @default.
- W2059664105 hasAuthorship W2059664105A5090133386 @default.
- W2059664105 hasBestOaLocation W20596641052 @default.
- W2059664105 hasConcept C105702510 @default.
- W2059664105 hasConcept C105795698 @default.
- W2059664105 hasConcept C12267149 @default.
- W2059664105 hasConcept C136229726 @default.
- W2059664105 hasConcept C139945424 @default.
- W2059664105 hasConcept C141071460 @default.
- W2059664105 hasConcept C142724271 @default.
- W2059664105 hasConcept C153180895 @default.
- W2059664105 hasConcept C154945302 @default.
- W2059664105 hasConcept C2776541429 @default.
- W2059664105 hasConcept C2776548296 @default.
- W2059664105 hasConcept C2776886416 @default.
- W2059664105 hasConcept C2779100257 @default.
- W2059664105 hasConcept C2780554211 @default.
- W2059664105 hasConcept C2781440623 @default.