Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059676957> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2059676957 endingPage "900" @default.
- W2059676957 startingPage "900" @default.
- W2059676957 abstract "Let R be a commutative ring. Then any injective endomorphism of a finitely generated R-module is always an isomorphism if and only if R is 0-dimensional, that is, if every prime ideal is maximal. This note aims at considering cases where an injective endomorphism of a finitely generated module is, actually, an isomorphism. It is a simple exercise that artinian modules are endowed with this property [1, p. 23] and here we will show that the commutative rings for which the fact above is always true resemble artinian rings. A similar question on when surjective endomorphisms of finitely generated modules are isomorphisms was proved independently by Strooker [3] and the author [4] or [5] for any commutative ring, regardless of finite presentation [2, p. 35 ] or chain conditions [1, p. 23]. For a commutative ring R, the result of this note says THEOREM. Any injective endomorphism of a finitely generated Rmodule is an isomorphism if and only if every prime ideal of R is maximal. That the above condition is necessary, it is easy to see: If PCQ are two distinct primes in R, then any element xEQ-P induces, via multiplication, an injection of R/P which is not surjective. The converse takes longer to prove but it is just as easy. Consider thus a ring R with the aforementioned property, that is, of having Krull dimension 0, and let f be an injection of the finitely generated R-module M. This module can be made into an R[x]module by defining x m=f(m) for m M. We claim that as an R [x ]-module M has an annihilator I, big enough, so that S = R [x ]/I is 0-dimensional. To see this, let ml, * * *, m1, be a generating set for M as an R-module. We have xmi= Ermi,m with rijCR, that is, a system of equations Received by the editors February 6, 1970. AMS Subject Classifications. Primary 1320; Secondary 1340." @default.
- W2059676957 created "2016-06-24" @default.
- W2059676957 creator A5067134561 @default.
- W2059676957 date "1970-08-01" @default.
- W2059676957 modified "2023-09-25" @default.
- W2059676957 title "Injective Endomorphisms of Finitely Generated Modules" @default.
- W2059676957 cites W2067365953 @default.
- W2059676957 doi "https://doi.org/10.2307/2036775" @default.
- W2059676957 hasPublicationYear "1970" @default.
- W2059676957 type Work @default.
- W2059676957 sameAs 2059676957 @default.
- W2059676957 citedByCount "7" @default.
- W2059676957 countsByYear W20596769572012 @default.
- W2059676957 countsByYear W20596769572019 @default.
- W2059676957 crossrefType "journal-article" @default.
- W2059676957 hasAuthorship W2059676957A5067134561 @default.
- W2059676957 hasConcept C116858840 @default.
- W2059676957 hasConcept C128107574 @default.
- W2059676957 hasConcept C162860070 @default.
- W2059676957 hasConcept C202444582 @default.
- W2059676957 hasConcept C33923547 @default.
- W2059676957 hasConcept C94375191 @default.
- W2059676957 hasConcept C99463465 @default.
- W2059676957 hasConceptScore W2059676957C116858840 @default.
- W2059676957 hasConceptScore W2059676957C128107574 @default.
- W2059676957 hasConceptScore W2059676957C162860070 @default.
- W2059676957 hasConceptScore W2059676957C202444582 @default.
- W2059676957 hasConceptScore W2059676957C33923547 @default.
- W2059676957 hasConceptScore W2059676957C94375191 @default.
- W2059676957 hasConceptScore W2059676957C99463465 @default.
- W2059676957 hasIssue "4" @default.
- W2059676957 hasLocation W20596769571 @default.
- W2059676957 hasOpenAccess W2059676957 @default.
- W2059676957 hasPrimaryLocation W20596769571 @default.
- W2059676957 hasRelatedWork W1586528041 @default.
- W2059676957 hasRelatedWork W1612601165 @default.
- W2059676957 hasRelatedWork W1972721608 @default.
- W2059676957 hasRelatedWork W1982553997 @default.
- W2059676957 hasRelatedWork W2029736304 @default.
- W2059676957 hasRelatedWork W2049007455 @default.
- W2059676957 hasRelatedWork W2087707853 @default.
- W2059676957 hasRelatedWork W2120384785 @default.
- W2059676957 hasRelatedWork W4256042440 @default.
- W2059676957 hasRelatedWork W4299509941 @default.
- W2059676957 hasVolume "25" @default.
- W2059676957 isParatext "false" @default.
- W2059676957 isRetracted "false" @default.
- W2059676957 magId "2059676957" @default.
- W2059676957 workType "article" @default.