Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059792018> ?p ?o ?g. }
- W2059792018 endingPage "25124" @default.
- W2059792018 startingPage "25115" @default.
- W2059792018 abstract "Previously, we and others reported that the high mobility group proteins, HMGB-1/-2, enhance DNA binding in vitro and transactivation in situ by the steroid hormone subgroup of nuclear receptors but did not influence these functions of class II receptors. We show here that the DNA binding domain (DBD) is sufficient to account for the selective influence of HMGB-1/-2 on the steroid class of receptors. Furthermore, the use of chimeric DBDs reveals that this selectivity is dependent on the C-terminal extension (CTE), amino acid sequences adjacent to the zinc finger core DBD. HMGB-1/-2 interact directly with the DBDs of steroid but not class II receptors, and this interaction requires the CTE. Thisin vitro interaction correlates with a requirement of the CTE for maximal HMGB-1/-2 enhancement of DNA binding in vitro and transcriptional activation in cells. Finally, class II receptor DBDs have a much higher intrinsic affinity for DNA than steroid receptor DBDs, and this affinity difference is also dependent on the CTE. These results reveal the importance of the steroid receptor CTE for DNA binding affinity and functional response to HMGB-1/-2. Previously, we and others reported that the high mobility group proteins, HMGB-1/-2, enhance DNA binding in vitro and transactivation in situ by the steroid hormone subgroup of nuclear receptors but did not influence these functions of class II receptors. We show here that the DNA binding domain (DBD) is sufficient to account for the selective influence of HMGB-1/-2 on the steroid class of receptors. Furthermore, the use of chimeric DBDs reveals that this selectivity is dependent on the C-terminal extension (CTE), amino acid sequences adjacent to the zinc finger core DBD. HMGB-1/-2 interact directly with the DBDs of steroid but not class II receptors, and this interaction requires the CTE. Thisin vitro interaction correlates with a requirement of the CTE for maximal HMGB-1/-2 enhancement of DNA binding in vitro and transcriptional activation in cells. Finally, class II receptor DBDs have a much higher intrinsic affinity for DNA than steroid receptor DBDs, and this affinity difference is also dependent on the CTE. These results reveal the importance of the steroid receptor CTE for DNA binding affinity and functional response to HMGB-1/-2. progesterone receptor estrogen receptor glucocorticoid receptor androgen receptor mineralocorticoid receptor thyroid hormone receptor retinoic acid receptor retinoid X receptor vitamin D3 receptor peroxisome proliferator-activated receptor high mobility group protein DNA binding domain C-terminal extension hormone response element glutathione S-transferase amino acid dithiothreitol electrophoretic mobility shift assay progesterone response element glucocorticoid response element DNA binding domain, hinge and ligand binding domain Nuclear hormone receptors comprise a superfamily of transcription factors that regulates diverse metabolic processes by binding to response elements in the enhancer regions of specific genes. This superfamily consists of three receptor subclasses: 1) the steroid hormone receptors for progesterone (PR)1, estrogen (ER), glucocorticoids (GR), androgens (AR), and mineralocorticoids (MR); 2) class II receptors for thyroid hormone (TR), retinoids (RAR and RXR), vitamin D3 (VDR), prostaglandins (PPAR), oxysterols, and bile acids; and 3) orphan receptors for which no endogenous ligand has been identified (1Mangelsdorf D.J. Evans R.M. Cell. 1995; 83: 841-850Abstract Full Text PDF PubMed Scopus (2818) Google Scholar, 2Beato M. Klug J. Hum. Reprod. Update. 2000; 6: 225-236Crossref PubMed Scopus (477) Google Scholar, 3Peet D.J. Turley S.D., Ma, W. Janowski B.A. Lobaccaro J.-M.A. Hammer R.E. Manglesdorf D.J. Cell. 1998; 93: 693-704Abstract Full Text Full Text PDF PubMed Scopus (1230) Google Scholar, 4Wang H. Chen J. Hollister K. Sowers L.C. Forman B.M. Mol. Cell. 1999; 3: 542-553Abstract Full Text Full Text PDF Scopus (1252) Google Scholar). Each of the receptor subclasses is characterized by a unique mechanism of action with respect to dimerization and DNA sequence recognition. Steroid receptors form homodimers that optimally recognize hexameric DNA elements arranged as inverted repeats separated by three unspecified base pairs. PR, GR, AR, and MR bind to the core hexamer AGAACA, whereas ER recognizes AGGTCA (2Beato M. Klug J. Hum. Reprod. Update. 2000; 6: 225-236Crossref PubMed Scopus (477) Google Scholar). Class II receptors preferentially function as heterodimers with RXR and recognize the AGGTCA hexamer arranged as direct repeats. Variable spacing between the direct repeats determines the RXR heterodimer binding specificity. Class II receptors, particularly TR, can also recognize an inverted repeat as homodimers, or half-sites as monomers. Orphan receptors can bind to the AGGTCA hexamer arranged either as a direct repeat, palindrome, or half-site as heterodimers with RXR, homodimers, or monomers (1Mangelsdorf D.J. Evans R.M. Cell. 1995; 83: 841-850Abstract Full Text PDF PubMed Scopus (2818) Google Scholar, 5Kurokawa R., Yu, V.C. Naar A. Kyakumoto S. Han Z. Silverman S. Rosenfeld M.G. Glass C.K. Genes Dev. 1993; 7: 1423-1435Crossref PubMed Scopus (285) Google Scholar, 6Perlmann T. Rangarajan P.N. Umesono K. Evans R.M. Genes Dev. 1993; 7: 1411-1422Crossref PubMed Scopus (330) Google Scholar, 7Glass C.K. Endocr. Rev. 1994; 15: 391-407PubMed Google Scholar).DNA-bound nuclear receptors activate transcription through assembly of a coactivator protein complex (8Edwards D.P. J. Mammary Gland Biol. Neoplasia. 2000; 5: 293-310Crossref Scopus (117) Google Scholar, 9Freedman L.P. Cell. 1999; 97: 5-8Abstract Full Text Full Text PDF PubMed Scopus (383) Google Scholar, 10McKenna N.J. Lanz R.B. O'Malley B.W. Endocr. Rev. 1999; 20: 321-344Crossref PubMed Scopus (1639) Google Scholar). Some of these coactivators possess enzyme activities that are thought to facilitate access of general transcription factors to chromatin templates (11Chen H.W. Lin R.J. Schiltz R.L. Chakravarti D. Nash A. Nagy L. Privalsky M.L. Nakatani Y. Evans R.M. Cell. 1997; 90: 569-580Abstract Full Text Full Text PDF PubMed Scopus (1253) Google Scholar, 12Chen D., Ma, H. Hong H. Koh S.S. Huang S.-M. Schurter B.T. Aswad D.W. Stallcup M.R. Science. 1999; 284: 2174-2177Crossref PubMed Scopus (991) Google Scholar). Additionally, the coactivator complex may serve as a protein bridge to facilitate assembly of the basal transcription apparatus (13Fondell J.D., Ge, H. Roeder R.G. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 8329-8333Crossref PubMed Scopus (459) Google Scholar, 14Ito M. Yuan C.-X. Malik S., Gu, W. Fondell J.D. Yamamura S., Fu, Z.-Y. Zhang X. Qin J. Roeder R.G. Mol. Cell. 1999; 3: 361-370Abstract Full Text Full Text PDF PubMed Scopus (357) Google Scholar). We and others have identified another group of co-regulatory proteins, the high mobility group proteins 1 and 2 (HMGB-1/-2), that facilitate steroid receptor interaction with specific target DNA sequences and appear to be essential for maximal transcriptional activation by this subgroup of nuclear receptors (15Onate S. Prendergast P. Wagner J. Nissen M. Reeves R. Pettijohn D. Edwards D. Mol. Cell. Biol. 1994; 14: 3376-3391Crossref PubMed Google Scholar, 16Verrier C.S. Roodi N. Yee C.J. Bailey R. Jensen R.A. Bustin M. Parl F.F. Mol. Endocrinol. 1997; 11: 1009-1019Crossref PubMed Scopus (71) Google Scholar, 17Romine L.E. Wood J.R. Lamia L.A. Prendergast P. Edwards D.P. Nardulli A.M. Mol. Endocrinol. 1998; 12: 664-674Crossref PubMed Scopus (53) Google Scholar, 18Boonyaratanakornkit V. Senkus Melvin V. Prendergast P. Altmann M. Ronfani L. Bianchi M.E. Taraseviciene L. Nordeen S.K. Allegretto E.A. Edwards D.P. Mol. Cell. Biol. 1998; 18: 4471-4487Crossref PubMed Scopus (299) Google Scholar, 19Zhang C.C. Krieg S. Shapiro D.J. Mol. Endocrinol. 1999; 13: 632-643Crossref PubMed Google Scholar, 20Senkus Melvin V. Edwards D.P. Steroids. 1999; 64: 576-586Crossref PubMed Scopus (70) Google Scholar).HMGB-1/-2 2The nomenclature to identify the high mobility group protein (HMG) family has been revised so that the proteins formerly known as HMG-1/-2 are now referred to as HMGB-1/-2, where the “B” indicates the presence of an HMG-box.2The nomenclature to identify the high mobility group protein (HMG) family has been revised so that the proteins formerly known as HMG-1/-2 are now referred to as HMGB-1/-2, where the “B” indicates the presence of an HMG-box. proteins are ubiquitous, conserved, non-histone chromatin proteins that bind to the minor groove of DNA in a structure-specific, sequence-independent manner (21Bustin M. Reeves R. Prog. Nucleic Acid Res. Mol. Biol. 1996; 54: 35-100Crossref PubMed Google Scholar, 22Bustin M. Mol. Cell. Biol. 1999; 19: 5237-5246Crossref PubMed Scopus (746) Google Scholar). A clear physiological role for these proteins has not been defined; however, they have been implicated in processes that require manipulation of DNA structure and assembly of higher order nucleoprotein complexes, such as DNA replication and repair, recombination, and transcription (23Paull T.T. Haykinson M.J. Johnson R.C. Genes Dev. 1993; 7: 1521-1534Crossref PubMed Scopus (309) Google Scholar, 24Grosschedl R. Giese K. Pagel J. Trends Genet. 1994; 10: 94-100Abstract Full Text PDF PubMed Scopus (729) Google Scholar). In addition, HMGB-1/-2 proteins enhance DNA binding and transcriptional activity of a number of eukaryotic transcriptional activators, including octamer transcription factors (Oct-1, Oct-2, and Oct-6) (25Zwilling S. Konig H. Wirth T. EMBO J. 1995; 14: 1198-1208Crossref PubMed Scopus (217) Google Scholar), homeodomain protein HOXD9 (26Zappavigna V. Falciola L. Citterich M.H. Mavilio F. Bianchi M.E. EMBO J. 1996; 15: 4981-4991Crossref PubMed Scopus (214) Google Scholar), p53 (27Jayaraman L. Moorthy N.C. Murthy K.G.K. Manley J.L. Bustin M. Prives C. Genes Dev. 1997; 12: 462-472Crossref Scopus (281) Google Scholar), viral transcription factors (28Watt F. Malloy P.L. Nucleic Acids Res. 1988; 16: 1471-1486Crossref PubMed Scopus (76) Google Scholar, 29Carrozza M.J. DeLuca N. J. Virol. 1998; 72: 6752-6757Crossref PubMed Google Scholar), Rel family members (30Brickman J. Adam M. Ptashne M. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 10679-10683Crossref PubMed Scopus (70) Google Scholar), and the steroid hormone receptors (15Onate S. Prendergast P. Wagner J. Nissen M. Reeves R. Pettijohn D. Edwards D. Mol. Cell. Biol. 1994; 14: 3376-3391Crossref PubMed Google Scholar, 16Verrier C.S. Roodi N. Yee C.J. Bailey R. Jensen R.A. Bustin M. Parl F.F. Mol. Endocrinol. 1997; 11: 1009-1019Crossref PubMed Scopus (71) Google Scholar, 17Romine L.E. Wood J.R. Lamia L.A. Prendergast P. Edwards D.P. Nardulli A.M. Mol. Endocrinol. 1998; 12: 664-674Crossref PubMed Scopus (53) Google Scholar, 18Boonyaratanakornkit V. Senkus Melvin V. Prendergast P. Altmann M. Ronfani L. Bianchi M.E. Taraseviciene L. Nordeen S.K. Allegretto E.A. Edwards D.P. Mol. Cell. Biol. 1998; 18: 4471-4487Crossref PubMed Scopus (299) Google Scholar, 19Zhang C.C. Krieg S. Shapiro D.J. Mol. Endocrinol. 1999; 13: 632-643Crossref PubMed Google Scholar, 20Senkus Melvin V. Edwards D.P. Steroids. 1999; 64: 576-586Crossref PubMed Scopus (70) Google Scholar). However, not all sequence-specific transcription factors are influenced by HMGB-1/-2. Paull et al. showed that only a subset of transcriptional activators were influenced by loss of the HMGB proteins, NHP6A and 6B, in yeast (31Paull T.T. Carey M. Johnson R.C. Genes Dev. 1996; 10: 2769-2781Crossref PubMed Scopus (102) Google Scholar). Additionally, we and others have shown that both HMGB-1/-2 enhance DNA binding and transcriptional activity of the steroid hormone subclass of nuclear receptors while not affecting these functions of class II receptors, including RAR, VDR, or RXR (18Boonyaratanakornkit V. Senkus Melvin V. Prendergast P. Altmann M. Ronfani L. Bianchi M.E. Taraseviciene L. Nordeen S.K. Allegretto E.A. Edwards D.P. Mol. Cell. Biol. 1998; 18: 4471-4487Crossref PubMed Scopus (299) Google Scholar, 20Senkus Melvin V. Edwards D.P. Steroids. 1999; 64: 576-586Crossref PubMed Scopus (70) Google Scholar, 26Zappavigna V. Falciola L. Citterich M.H. Mavilio F. Bianchi M.E. EMBO J. 1996; 15: 4981-4991Crossref PubMed Scopus (214) Google Scholar).The nuclear receptor core DBD consists of two zinc fingers and two α-helices. Helix1 makes base-specific contacts in the major groove, while helix2 maintains the overall structural fold of the core DBD (32Zilliacus J. Wright A.P.H. Carlstedt-Duke J. Gustaffson J.-A. Mol. Endocrinol. 1995; 9: 389-400Crossref PubMed Google Scholar, 33Lee M.S. Kliewer S.A. Provencal J. Wright P.E. Evans R.M. Science. 1993; 260: 1117-1121Crossref PubMed Scopus (249) Google Scholar, 34Rastinejad F. Perlman T. Evans R. Sigler P. Nature. 1995; 375: 203-211Crossref PubMed Scopus (466) Google Scholar, 35Sem D.S. Casimiro D.R. Kliewer S.A. Provencal J. Evans R.M. Wright P.E. J. Biol. Chem. 1997; 272: 18038-18043Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar, 36Meinke G. Sigler P.B. Nat. Struct. Biol. 1999; 6: 471-477Crossref PubMed Scopus (95) Google Scholar, 37Rastinejad F. Wagner T. Zhao Q. Khorasanizadeh S. EMBO J. 2000; 19: 1045-1054Crossref PubMed Scopus (147) Google Scholar, 38Zhao Q. Chasse S.A. Devarakonda S. Sierk M.L. Ahvazi B. Rastinejad F. J. Mol. Biol. 2000; 296: 509-520Crossref PubMed Scopus (97) Google Scholar). Both biochemical and structural analyses of the nuclear receptor DBDs have shown that this domain is highly conserved across all nuclear receptors. In addition to the core DBD, sequences located immediately C-terminal to the second zinc finger, termed the C-terminal extension (CTE), directly participate in DNA binding by the class II and orphan receptors. Unlike the core DBD, CTE sequences are not conserved among nuclear receptors, and the CTE adopts different structural motifs (39Khorasanizadeh S. Rastinejad F. Trends Biochem. Sci. 2001; 26: 384-390Abstract Full Text Full Text PDF PubMed Scopus (218) Google Scholar). However, these divergent structures share a common function to extend the protein-DNA interface beyond that of base-specific contacts in the major groove thus stabilizing DNA binding. Crystallization of a TRβ-RXRα DBD heterodimer bound to a direct repeat element demonstrated that the TRβ CTE forms an additional α-helix (helix3) distinct from the core DBD that projects across the minor groove of the DNA helix making contacts along the phosphate backbone (34Rastinejad F. Perlman T. Evans R. Sigler P. Nature. 1995; 375: 203-211Crossref PubMed Scopus (466) Google Scholar). NMR analysis of the RXR DBD in solution also revealed a third α-helix in the CTE (33Lee M.S. Kliewer S.A. Provencal J. Wright P.E. Evans R.M. Science. 1993; 260: 1117-1121Crossref PubMed Scopus (249) Google Scholar). However, the crystal structure of the RXR DBD-DNA complex had a CTE with an extended structure, suggesting that the RXR CTE undergoes a conformational change upon binding to DNA (37Rastinejad F. Wagner T. Zhao Q. Khorasanizadeh S. EMBO J. 2000; 19: 1045-1054Crossref PubMed Scopus (147) Google Scholar, 38Zhao Q. Chasse S.A. Devarakonda S. Sierk M.L. Ahvazi B. Rastinejad F. J. Mol. Biol. 2000; 296: 509-520Crossref PubMed Scopus (97) Google Scholar). The orphan receptor CTE contains a short, conserved amino acid sequence, termed the “GRIP-box”, with the consensus RXGRZP, where “X” is any amino acid and “Z” is a hydrophobic residue. Structural analysis of orphan receptor DBDs bound to DNA as either a homodimer (RevErb, (40Zhao Q. Khorasanizadeh S. Miyoshi Y. Lazar M.A. Rastinejad F. Mol. Cell. 1998; 1: 849-861Abstract Full Text Full Text PDF PubMed Scopus (119) Google Scholar)) or monomer (NGFI-B, (36Meinke G. Sigler P.B. Nat. Struct. Biol. 1999; 6: 471-477Crossref PubMed Scopus (95) Google Scholar)), revealed the CTE lying along the minor groove of DNA in an extended conformation distinct from that observed in either of the class II receptor DBDs. This GRIP-box creates an additional protein-DNA interface beyond that of the core DBD that interacts with specific base pairs. In the absence of DNA the orphan receptor CTE is unstructured suggesting that it also undergoes a conformational change upon association with DNA (35Sem D.S. Casimiro D.R. Kliewer S.A. Provencal J. Evans R.M. Wright P.E. J. Biol. Chem. 1997; 272: 18038-18043Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar). Biochemical analysis has also demonstrated the importance of the CTE for high affinity DNA binding because point mutations or truncation of the class II and orphan receptor CTEs reduces or abolishes DNA binding (33Lee M.S. Kliewer S.A. Provencal J. Wright P.E. Evans R.M. Science. 1993; 260: 1117-1121Crossref PubMed Scopus (249) Google Scholar, 41Zechel C. Shen X.-Q. Chambon P. Gronemeyer H. EMBO J. 1994; 13: 1414-1424Crossref PubMed Scopus (173) Google Scholar, 42Hsieh J.-C. Jurutka P.W. Selznick S.H. Reeder M.C. Haussler C.A. Whitfield G.K. Haussler M.R. Biochem. Biophys. Res. Commun. 1995; 215: 1-7Crossref PubMed Scopus (32) Google Scholar, 43Quack M. Szafranski K. Rouvinen J. Carlberg C. Nucleic Acids Res. 1998; 26: 5372-5378Crossref PubMed Scopus (31) Google Scholar, 44Hsieh J.-C. Whittfield G.K. Oza A.K. Dang H.T.L. Price J.N. Galligan M.A. Jurutka P.W. Thompson P.D. Haussler C.A. Haussler M.R. Biochemistry. 1999; 38: 16347-16358Crossref PubMed Scopus (37) Google Scholar, 45Wilson T.E. Paulsen R.E. Padgett K.A. Milbrandt J. Science. 1992; 256: 107-110Crossref PubMed Scopus (277) Google Scholar, 46Wilson T.E. Fahrner T.J. Milbrandt J. Mol. Cell. Biol. 1993; 13: 5794-5804Crossref PubMed Scopus (356) Google Scholar). These results taken together suggest that the class II and orphan nuclear receptors have a bipartite DBD consisting of the core DBD that makes base-specific contacts with core hormone response elements (HREs) and the CTE that provides additional, largely nonspecific DNA contacts that stabilize the protein-DNA complex.There is no structural evidence for the existence of an equivalent CTE in the steroid class of nuclear receptors. Structural studies of the ERα and GR DBDs complexed to DNA and in solution either lacked the comparable length CTE sequences in the expressed DBD constructs or the CTE was unstructured (32Zilliacus J. Wright A.P.H. Carlstedt-Duke J. Gustaffson J.-A. Mol. Endocrinol. 1995; 9: 389-400Crossref PubMed Google Scholar). Aside from an earlier report that sequences C-terminal to the core ERα DBD are important for DNA binding stability (47Mader S. Chambon P. White J.H. Nucleic Acids Res. 1993; 21: 1125-1132Crossref PubMed Scopus (101) Google Scholar), no other biochemical data are available to suggest that the CTE of steroid receptors directly participates in DNA binding as it does with other nuclear receptors.Here, we determine the mechanistic basis for the selective influence of HMGB-1/-2 on the steroid subclass of nuclear receptors. Through biochemical analysis of purified DBDs, we show that HMGB-1/-2 selectively influence DNA binding by the DBDs for steroid but not class II receptors. By use of chimeric DBDs, in which the CTE was swapped between steroid and class II receptors, we demonstrate that the CTE is responsible for the differential influence of HMGB-1/-2 on the two classes of nuclear receptors. Furthermore, class II receptor DBDs exhibited a much higher intrinsic affinity for their target DNAs than the steroid receptor DBDs, a difference also attributed to the CTE. Finally, we show that the CTE of steroid receptors is required for direct interaction with HMGB-1/-2 and for maximal HMGB-1/-2-enhanced DNA binding in vitro and transcriptional activation in cells. These results demonstrate that the CTE of steroid receptors plays a role in DNA binding but acts differently than class II DBDs by a mechanism that involves interaction with HMGB-1/-2.DISCUSSIONThe present study reveals that the CTE of steroid receptors plays a role in DNA binding but acts by a distinct mechanism from class II nuclear receptors. By use of chimeric DBDs and truncation mutants, we demonstrate that the CTE is responsible for the differential ability of HMGB-1/-2 to selectively increase the DNA binding affinity of steroid receptor DBDs and is required for a direct protein interaction between steroid receptors and HMGB-1/-2 that does not occur with class II nuclear receptors. We also show that the CTE is responsible for a higher intrinsic DNA binding affinity of class II DBDs. These results taken together demonstrate that the CTE of steroid receptors is a site required for interaction with HMGB-1/-2 and for maximal enhancement of steroid receptor-DNA binding and transactivation by HMGB-1/-2.No other study to our knowledge has directly compared the apparent binding affinities of different classes of nuclear receptor DBDs under the same conditions. This comparison demonstrates that the class II receptor DBDs have a substantially higher intrinsic DNA binding affinity than the steroid receptor DBDs, particularly the PR and GR DBDs (Table I), suggesting fundamental differences in the way the DBDs of these two nuclear receptor subclasses interact with DNA. Fusing the TRβ CTE to the PR core DBD increased the affinity of the PR DBD for PREs 6-fold, whereas fusing the PR CTE to the core TR DBD resulted in a 13–30-fold reduction in the affinity of the TRβ DBD for its target DNA (Fig. 5 and Table I). These CTE domain swapping experiments indicate that the observed affinity differences between the steroid and class II receptor DBDs are largely attributable to the CTE.The ERα DBD appears to be unique among the steroid receptor DBDs, because it bound to DNA with a higher apparent affinity than the other steroid receptor DBDs analyzed (Table I). ERα recognizes the core DNA hexamer AGGTCA, a sequence bound by the majority of the nuclear receptor superfamily with the exception of the GR subgroup of steroid receptors, including PR, GR, MR, and AR, which all bind to AGAACA. Comparison of the GR and ERα DBD-DNA crystal structures demonstrates that ERα makes more direct and water-mediated DNA contacts in the major groove than does GR, a possible mechanism for the observed affinity differences. Additionally, the ERα CTE (aa 261–264) contains a sequence motif similar to the GRIP-box sequence in the orphan receptor SF-1. The GRIP-box forms an extended structure that interacts in the minor groove flanking HREs and is important for stability of orphan receptor-DNA interaction. Other steroid receptor CTEs, such as those in PR or ERβ, do not contain a similar GRIP-box-like sequence. If the ERα CTE contains a bona fide GRIP-box this could account for the affinity differences observed between the ERα DBD and other steroid receptor DBDs. Nonetheless, the ERα DBD behaved like other steroid receptors in that HMGB-1/-2 increased its DNA binding affinity 7-fold (Table I). It is of interest to note that the DNA binding affinity of ERα DBD in the presence of HMGB-1/-2 is higher than the intrinsic affinities of the class II DBDs (Table I) further illustrating that ERα has some unique properties that do not fit with the steroid or class II receptor classifications.Whereas the steroid receptor DBDs have a low relative DNA binding affinity, addition of HMGB-1/-2 enhanced this affinity 7–9-fold, such that the K d app approached that of the class II receptor DBDs. In contrast, HMGB-2 had no effect on DNA binding by RXRα or TRβ DBDs (Figs. 3 and 4, and Table I). This selective interaction with the steroid receptor DBDs is not dependent on the DNA target element because HMGB-1/-2 enhanced PR DBD binding to both inverted repeat and half-site elements (Fig. 3) (20Senkus Melvin V. Edwards D.P. Steroids. 1999; 64: 576-586Crossref PubMed Scopus (70) Google Scholar) but did not affect binding by the TRβ DBD to either direct or inverted repeat elements (Table I). These results suggest that a feature of steroid receptor DBDs and not the target DNA is the important determinant for the selective influence of HMGB-1/-2. Indeed, we show that the DBD of steroid receptors mediates a protein interaction with HMGB-1/-2 that was not detected with class II receptor DBDs (Fig. 6). That HMGB-1/-2 interaction with the steroid receptors is mediated through the DBD is not entirely surprising since HMGB-1/-2 interaction with the OCT and HOX transcription factors, is also mediated by the DBD (25Zwilling S. Konig H. Wirth T. EMBO J. 1995; 14: 1198-1208Crossref PubMed Scopus (217) Google Scholar, 26Zappavigna V. Falciola L. Citterich M.H. Mavilio F. Bianchi M.E. EMBO J. 1996; 15: 4981-4991Crossref PubMed Scopus (214) Google Scholar). A correlation was observed between the ability of HMGB-1/-2 to stimulate receptor activity and to make a direct contact with the receptor. HMGB-1/-2 directly interacted with the steroid receptors (PR and ER) and stimulated both DNA binding and transactivation by these receptors. The class II receptors (TRβ and RXRα) did not interact with HMGB-1/-2, nor did they respond functionally to HMGB-1/-2 (18Boonyaratanakornkit V. Senkus Melvin V. Prendergast P. Altmann M. Ronfani L. Bianchi M.E. Taraseviciene L. Nordeen S.K. Allegretto E.A. Edwards D.P. Mol. Cell. Biol. 1998; 18: 4471-4487Crossref PubMed Scopus (299) Google Scholar) (Fig.6). This correlation highlights the importance of protein-protein interactions in HMGB-1/-2 stimulation of steroid receptor activity and is consistent with previous observations that HMGB-1/-2 selectively increased DNA binding and transactivation by full-length steroid receptors but not class II receptors (18Boonyaratanakornkit V. Senkus Melvin V. Prendergast P. Altmann M. Ronfani L. Bianchi M.E. Taraseviciene L. Nordeen S.K. Allegretto E.A. Edwards D.P. Mol. Cell. Biol. 1998; 18: 4471-4487Crossref PubMed Scopus (299) Google Scholar, 20Senkus Melvin V. Edwards D.P. Steroids. 1999; 64: 576-586Crossref PubMed Scopus (70) Google Scholar, 26Zappavigna V. Falciola L. Citterich M.H. Mavilio F. Bianchi M.E. EMBO J. 1996; 15: 4981-4991Crossref PubMed Scopus (214) Google Scholar).HMGB-1/-2 interaction with the steroid receptor DBD was dependent on the CTE, since truncation of the CTE resulted in a loss of detectable protein interaction (Fig. 6). Whether the CTE is a binding site for HMGB-1/-2 or confers a conformation on the DBD that is required for interaction remains to be determined. Truncation of the CTE also resulted in a significant reduction in HMGB-1/-2 enhancement of PR DBD-DNA binding (Table I). Likewise, the chimeric PR construct, which contained the TRβ CTE in place of its own CTE, also exhibited a substantial reduction in HMGB-1/-2 stimulation of PR-mediated transactivation in cells (Fig. 7). Thus, we also observed a correlation between the requirement of the CTE for physical association with HMGB-1/-2 and the ability of HMGB-1/-2 to stimulate PR DNA bindingin vitro and PR-mediated transactivation in situ. However, some residual stimulatory activity of HMGB-1/-2 in the absence of the PR CTE was still observed in DNA binding and transfection assays suggesting that physical interaction with the CTE does not account for all the HMGB-1/-2 effects on PR activity. The mechanism for this residual HMGB-1/-2 activity in the absence of the CTE is not known but may be explained by interaction of HMGB-1/-2 with DNA or a weak interaction between HMGB-1/-2 and the core DBD that is not detectable under our assay conditions.The CTEs of class II and orphan receptors have clearly been shown to play an important role in DNA binding through extension and stabilization of protein-DNA contacts through interactions with DNA in the minor groove. Only a few reports exist to support a similar role in DNA binding of the steroid receptor CTE. Truncations of the ERα CTE led to an acceleration of the off-rate of the ER DBD from DNA and an increased sensitivity to the ionic strength of EMSA buffers (47Mader S. Chambon P. White J.H. Nucleic Acids Res. 1993; 21: 1125-1132Crossref PubMed Scopus (101) Google Scholar) suggesting a role of the CTE in stability of the ER-DNA complex. Additionally, truncation of the GR and AR CTEs to a length shorter than twelve amino acids reduced the DNA binding affinity (59Schoenmakers E. Alen P. Verrijdt G. Peeters B. Verhoeven G. Rombauts W. Classens F. Biochem. J. 1999; 341: 515-521Crossref PubMed Scopus (121) Google Scholar). In the same study, the CTE and the second zinc finger of AR were also required for AR recognition of a direct repeat androgen response element; a function attributed to the different dimerization mode required to bind to the direct versus inverted repeat (59Schoenmakers E. Alen P. Verrijdt G. Peeters B. Verhoeven G. Rombauts W. Classens F. Biochem. J. 1999; 341: 515-521Crossref PubMed Scopus (121) Google Scholar).The present results support a model whereby HMGB-1/-2 selectively interact with steroid receptors through a direct protein interaction with the DBD that is dependent on the CTE and that this interaction somehow increases the DNA-binding affinity of the receptor. The mechanism by which HMGB-1/-2 interaction enhances steroid receptor-DNA binding remains to be determined. One possibility is that the HMGB-1/-2 recruited by steroid receptors stabilizes the receptor-DNA complex by extending the protein-DNA interface thus substituting for the CTE of other nuclear receptors. However, the existence of a stable ternary DBD/HMGB/DNA complex is questionable since it is very difficult to capture HMGB-1/-2 in the final high affinity PR-DNA complex suggesting that HMGB-1/-2 interaction is transient (18Boonyaratanakornkit V. Senkus Melvin V. Prendergast P. Altmann M. Ronfani L. Bianchi M.E. Taraseviciene L. Nordeen S.K. Allegretto E.A. Edwards D.P. Mol. Cell. Biol. 1998; 18: 4471-4487Crossref PubMed Scopus (299) Google Scholar). 3S. Roemer and D. P. Edwards, unpublished data. An alternative mechanism favo" @default.
- W2059792018 created "2016-06-24" @default.
- W2059792018 creator A5016434405 @default.
- W2059792018 creator A5026980902 @default.
- W2059792018 creator A5029150600 @default.
- W2059792018 creator A5083507934 @default.
- W2059792018 date "2002-07-01" @default.
- W2059792018 modified "2023-10-18" @default.
- W2059792018 title "The C-terminal Extension (CTE) of the Nuclear Hormone Receptor DNA Binding Domain Determines Interactions and Functional Response to the HMGB-1/-2 Co-regulatory Proteins" @default.
- W2059792018 cites W1519947104 @default.
- W2059792018 cites W1527043413 @default.
- W2059792018 cites W1565489784 @default.
- W2059792018 cites W1766657157 @default.
- W2059792018 cites W1773515121 @default.
- W2059792018 cites W1936740132 @default.
- W2059792018 cites W1963587340 @default.
- W2059792018 cites W1969426807 @default.
- W2059792018 cites W1970569586 @default.
- W2059792018 cites W1976263202 @default.
- W2059792018 cites W1981022538 @default.
- W2059792018 cites W1985247182 @default.
- W2059792018 cites W1985865142 @default.
- W2059792018 cites W1987783037 @default.
- W2059792018 cites W1990379626 @default.
- W2059792018 cites W1993423079 @default.
- W2059792018 cites W1995754186 @default.
- W2059792018 cites W1999679416 @default.
- W2059792018 cites W2006622169 @default.
- W2059792018 cites W2011656910 @default.
- W2059792018 cites W2016236490 @default.
- W2059792018 cites W2016930558 @default.
- W2059792018 cites W2018570375 @default.
- W2059792018 cites W2020952430 @default.
- W2059792018 cites W2033226021 @default.
- W2059792018 cites W2034607609 @default.
- W2059792018 cites W2036702562 @default.
- W2059792018 cites W2037048972 @default.
- W2059792018 cites W2040417680 @default.
- W2059792018 cites W2044203168 @default.
- W2059792018 cites W2056635197 @default.
- W2059792018 cites W2059415631 @default.
- W2059792018 cites W2065209749 @default.
- W2059792018 cites W2088002379 @default.
- W2059792018 cites W2089261774 @default.
- W2059792018 cites W2096638364 @default.
- W2059792018 cites W2115910575 @default.
- W2059792018 cites W2117235109 @default.
- W2059792018 cites W2117464070 @default.
- W2059792018 cites W2117825435 @default.
- W2059792018 cites W2125695596 @default.
- W2059792018 cites W2131004988 @default.
- W2059792018 cites W2131155173 @default.
- W2059792018 cites W2153483985 @default.
- W2059792018 cites W2155740016 @default.
- W2059792018 cites W2159416234 @default.
- W2059792018 cites W2161619169 @default.
- W2059792018 cites W2165762583 @default.
- W2059792018 cites W2167203556 @default.
- W2059792018 cites W2169457085 @default.
- W2059792018 cites W2181469541 @default.
- W2059792018 cites W2186856601 @default.
- W2059792018 cites W4254228157 @default.
- W2059792018 cites W73359563 @default.
- W2059792018 doi "https://doi.org/10.1074/jbc.m110400200" @default.
- W2059792018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12006575" @default.
- W2059792018 hasPublicationYear "2002" @default.
- W2059792018 type Work @default.
- W2059792018 sameAs 2059792018 @default.
- W2059792018 citedByCount "56" @default.
- W2059792018 countsByYear W20597920182012 @default.
- W2059792018 countsByYear W20597920182013 @default.
- W2059792018 countsByYear W20597920182014 @default.
- W2059792018 countsByYear W20597920182015 @default.
- W2059792018 countsByYear W20597920182016 @default.
- W2059792018 countsByYear W20597920182017 @default.
- W2059792018 countsByYear W20597920182018 @default.
- W2059792018 countsByYear W20597920182019 @default.
- W2059792018 countsByYear W20597920182020 @default.
- W2059792018 countsByYear W20597920182022 @default.
- W2059792018 crossrefType "journal-article" @default.
- W2059792018 hasAuthorship W2059792018A5016434405 @default.
- W2059792018 hasAuthorship W2059792018A5026980902 @default.
- W2059792018 hasAuthorship W2059792018A5029150600 @default.
- W2059792018 hasAuthorship W2059792018A5083507934 @default.
- W2059792018 hasBestOaLocation W20597920181 @default.
- W2059792018 hasConcept C104317684 @default.
- W2059792018 hasConcept C121608353 @default.
- W2059792018 hasConcept C12554922 @default.
- W2059792018 hasConcept C134306372 @default.
- W2059792018 hasConcept C170493617 @default.
- W2059792018 hasConcept C185592680 @default.
- W2059792018 hasConcept C199360897 @default.
- W2059792018 hasConcept C23589133 @default.
- W2059792018 hasConcept C2778029271 @default.
- W2059792018 hasConcept C2779664074 @default.
- W2059792018 hasConcept C33923547 @default.
- W2059792018 hasConcept C36503486 @default.
- W2059792018 hasConcept C41008148 @default.