Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059804518> ?p ?o ?g. }
- W2059804518 endingPage "2675" @default.
- W2059804518 startingPage "2664" @default.
- W2059804518 abstract "Improving forecasting especially time series forecasting accuracy is an important yet often difficult task facing decision makers in many areas. Both theoretical and empirical findings have indicated that integration of different models can be an effective way of improving upon their predictive performance, especially when the models in combination are quite different. Artificial neural networks (ANNs) are flexible computing frameworks and universal approximators that can be applied to a wide range of forecasting problems with a high degree of accuracy. However, using ANNs to model linear problems have yielded mixed results, and hence; it is not wise to apply ANNs blindly to any type of data. Autoregressive integrated moving average (ARIMA) models are one of the most popular linear models in time series forecasting, which have been widely applied in order to construct more accurate hybrid models during the past decade. Although, hybrid techniques, which decompose a time series into its linear and nonlinear components, have recently been shown to be successful for single models, these models have some disadvantages. In this paper, a novel hybridization of artificial neural networks and ARIMA model is proposed in order to overcome mentioned limitation of ANNs and yield more general and more accurate forecasting model than traditional hybrid ARIMA-ANNs models. In our proposed model, the unique advantages of ARIMA models in linear modeling are used in order to identify and magnify the existing linear structure in data, and then a neural network is used in order to determine a model to capture the underlying data generating process and predict, using preprocessed data. Empirical results with three well-known real data sets indicate that the proposed model can be an effective way to improve forecasting accuracy achieved by traditional hybrid models and also either of the components models used separately." @default.
- W2059804518 created "2016-06-24" @default.
- W2059804518 creator A5002008057 @default.
- W2059804518 creator A5005829949 @default.
- W2059804518 date "2011-03-01" @default.
- W2059804518 modified "2023-10-14" @default.
- W2059804518 title "A novel hybridization of artificial neural networks and ARIMA models for time series forecasting" @default.
- W2059804518 cites W1572930125 @default.
- W2059804518 cites W1586335931 @default.
- W2059804518 cites W1965717422 @default.
- W2059804518 cites W1968371014 @default.
- W2059804518 cites W1969681270 @default.
- W2059804518 cites W1976604713 @default.
- W2059804518 cites W1976611654 @default.
- W2059804518 cites W1976676498 @default.
- W2059804518 cites W1977900532 @default.
- W2059804518 cites W1980933792 @default.
- W2059804518 cites W1981407057 @default.
- W2059804518 cites W1984755515 @default.
- W2059804518 cites W1986078433 @default.
- W2059804518 cites W1986528915 @default.
- W2059804518 cites W1987640094 @default.
- W2059804518 cites W1991001067 @default.
- W2059804518 cites W1994513282 @default.
- W2059804518 cites W1995462114 @default.
- W2059804518 cites W2003466743 @default.
- W2059804518 cites W2008151606 @default.
- W2059804518 cites W2017933454 @default.
- W2059804518 cites W2035365834 @default.
- W2059804518 cites W2041706261 @default.
- W2059804518 cites W2049229442 @default.
- W2059804518 cites W2050099778 @default.
- W2059804518 cites W2050654176 @default.
- W2059804518 cites W2053865013 @default.
- W2059804518 cites W2056558004 @default.
- W2059804518 cites W2057199658 @default.
- W2059804518 cites W2070181657 @default.
- W2059804518 cites W2079626203 @default.
- W2059804518 cites W2080690725 @default.
- W2059804518 cites W2091010684 @default.
- W2059804518 cites W2092315180 @default.
- W2059804518 cites W2092436092 @default.
- W2059804518 cites W2092624117 @default.
- W2059804518 cites W2103496339 @default.
- W2059804518 cites W2113021507 @default.
- W2059804518 cites W2113771037 @default.
- W2059804518 cites W2117014758 @default.
- W2059804518 cites W2121224351 @default.
- W2059804518 cites W2125644289 @default.
- W2059804518 cites W2137634615 @default.
- W2059804518 cites W2137983211 @default.
- W2059804518 cites W2142376054 @default.
- W2059804518 cites W2149391626 @default.
- W2059804518 cites W2149921893 @default.
- W2059804518 cites W2167477261 @default.
- W2059804518 cites W2171234954 @default.
- W2059804518 cites W2334014378 @default.
- W2059804518 cites W2463433918 @default.
- W2059804518 cites W3125613485 @default.
- W2059804518 cites W4239414618 @default.
- W2059804518 cites W4243618985 @default.
- W2059804518 cites W4255104568 @default.
- W2059804518 doi "https://doi.org/10.1016/j.asoc.2010.10.015" @default.
- W2059804518 hasPublicationYear "2011" @default.
- W2059804518 type Work @default.
- W2059804518 sameAs 2059804518 @default.
- W2059804518 citedByCount "565" @default.
- W2059804518 countsByYear W20598045182012 @default.
- W2059804518 countsByYear W20598045182013 @default.
- W2059804518 countsByYear W20598045182014 @default.
- W2059804518 countsByYear W20598045182015 @default.
- W2059804518 countsByYear W20598045182016 @default.
- W2059804518 countsByYear W20598045182017 @default.
- W2059804518 countsByYear W20598045182018 @default.
- W2059804518 countsByYear W20598045182019 @default.
- W2059804518 countsByYear W20598045182020 @default.
- W2059804518 countsByYear W20598045182021 @default.
- W2059804518 countsByYear W20598045182022 @default.
- W2059804518 countsByYear W20598045182023 @default.
- W2059804518 crossrefType "journal-article" @default.
- W2059804518 hasAuthorship W2059804518A5002008057 @default.
- W2059804518 hasAuthorship W2059804518A5005829949 @default.
- W2059804518 hasConcept C119857082 @default.
- W2059804518 hasConcept C121332964 @default.
- W2059804518 hasConcept C124101348 @default.
- W2059804518 hasConcept C143724316 @default.
- W2059804518 hasConcept C149782125 @default.
- W2059804518 hasConcept C151406439 @default.
- W2059804518 hasConcept C151730666 @default.
- W2059804518 hasConcept C154945302 @default.
- W2059804518 hasConcept C158622935 @default.
- W2059804518 hasConcept C159877910 @default.
- W2059804518 hasConcept C163175372 @default.
- W2059804518 hasConcept C24338571 @default.
- W2059804518 hasConcept C33923547 @default.
- W2059804518 hasConcept C41008148 @default.
- W2059804518 hasConcept C42536954 @default.
- W2059804518 hasConcept C50644808 @default.