Matches in SemOpenAlex for { <https://semopenalex.org/work/W2059995865> ?p ?o ?g. }
- W2059995865 endingPage "2903" @default.
- W2059995865 startingPage "2891" @default.
- W2059995865 abstract "Abstract An approach is presented to multivariate statistical process control (MSPC) for process monitoring and fault diagnosis based on principal‐component analysis (PCA) models of multiscale data. Process measurements, representing the cumulative effects of many underlying process phenomena, are decomposed by applying multiresolution analysis (MRA) by wavelet transformations. The decomposed process measurements are rearranged according to their scales, and PCA is applied to these multiscale data to capture process variable correlations occurring at different scales. Choosing an orthonormal mother wavelet allows each principal component to be a function of the process variables at only one scale level. The proposed method is discussed in the context of other multiscale approaches, and illustrated in detail using simulated data from a continuous stirred tank reactor (CSTR) system. A major contribution of the paper is to extend fault isolation methods based on contribution plots to multiscale approaches. In particular, once a fault is detected, the contributions of the variations at each scale to the fault are computed. These scale contributions can be very helpful in isolating faults that occur mainly at a single scale. For those scales having large contributions to the fault, one can further compute the variable contributions to those scales, thereby making fault diagnosis much easier. A comparison study is done through Monte Carlo simulation. The proposed method can enhance fault detection and isolation (FDI) performance when the frequency content of a fault effect is confined to a narrow‐frequency band. However, when the fault frequency content is not localized, the multiscale approaches perform very comparably to the standard single‐scale approaches, and offer no real advantage. © 2004 American Institute of Chemical Engineers AIChE J, 50: 2891–2903, 2004" @default.
- W2059995865 created "2016-06-24" @default.
- W2059995865 creator A5037888138 @default.
- W2059995865 creator A5037925981 @default.
- W2059995865 date "2004-10-14" @default.
- W2059995865 modified "2023-10-18" @default.
- W2059995865 title "Principal-component analysis of multiscale data for process monitoring and fault diagnosis" @default.
- W2059995865 cites W1599391636 @default.
- W2059995865 cites W1965155137 @default.
- W2059995865 cites W1978994389 @default.
- W2059995865 cites W1993694278 @default.
- W2059995865 cites W1996021349 @default.
- W2059995865 cites W1997616741 @default.
- W2059995865 cites W1999935041 @default.
- W2059995865 cites W2000858991 @default.
- W2059995865 cites W2003722232 @default.
- W2059995865 cites W2008616192 @default.
- W2059995865 cites W2013100297 @default.
- W2059995865 cites W2015436473 @default.
- W2059995865 cites W2020737422 @default.
- W2059995865 cites W2021589053 @default.
- W2059995865 cites W2052660575 @default.
- W2059995865 cites W2054354756 @default.
- W2059995865 cites W2057283314 @default.
- W2059995865 cites W2066551872 @default.
- W2059995865 cites W2071508038 @default.
- W2059995865 cites W2071813447 @default.
- W2059995865 cites W2077791644 @default.
- W2059995865 cites W2084327162 @default.
- W2059995865 cites W2107146446 @default.
- W2059995865 cites W2132314545 @default.
- W2059995865 cites W2147703419 @default.
- W2059995865 cites W2161969879 @default.
- W2059995865 cites W2619777610 @default.
- W2059995865 cites W4238865235 @default.
- W2059995865 cites W4239781892 @default.
- W2059995865 doi "https://doi.org/10.1002/aic.10260" @default.
- W2059995865 hasPublicationYear "2004" @default.
- W2059995865 type Work @default.
- W2059995865 sameAs 2059995865 @default.
- W2059995865 citedByCount "96" @default.
- W2059995865 countsByYear W20599958652012 @default.
- W2059995865 countsByYear W20599958652013 @default.
- W2059995865 countsByYear W20599958652014 @default.
- W2059995865 countsByYear W20599958652015 @default.
- W2059995865 countsByYear W20599958652016 @default.
- W2059995865 countsByYear W20599958652017 @default.
- W2059995865 countsByYear W20599958652018 @default.
- W2059995865 countsByYear W20599958652019 @default.
- W2059995865 countsByYear W20599958652020 @default.
- W2059995865 countsByYear W20599958652021 @default.
- W2059995865 countsByYear W20599958652022 @default.
- W2059995865 countsByYear W20599958652023 @default.
- W2059995865 crossrefType "journal-article" @default.
- W2059995865 hasAuthorship W2059995865A5037888138 @default.
- W2059995865 hasAuthorship W2059995865A5037925981 @default.
- W2059995865 hasConcept C111919701 @default.
- W2059995865 hasConcept C11413529 @default.
- W2059995865 hasConcept C124101348 @default.
- W2059995865 hasConcept C127313418 @default.
- W2059995865 hasConcept C151730666 @default.
- W2059995865 hasConcept C152745839 @default.
- W2059995865 hasConcept C153180895 @default.
- W2059995865 hasConcept C154945302 @default.
- W2059995865 hasConcept C165205528 @default.
- W2059995865 hasConcept C172707124 @default.
- W2059995865 hasConcept C175551986 @default.
- W2059995865 hasConcept C196216189 @default.
- W2059995865 hasConcept C27438332 @default.
- W2059995865 hasConcept C2779343474 @default.
- W2059995865 hasConcept C41008148 @default.
- W2059995865 hasConcept C47432892 @default.
- W2059995865 hasConcept C86803240 @default.
- W2059995865 hasConcept C98045186 @default.
- W2059995865 hasConceptScore W2059995865C111919701 @default.
- W2059995865 hasConceptScore W2059995865C11413529 @default.
- W2059995865 hasConceptScore W2059995865C124101348 @default.
- W2059995865 hasConceptScore W2059995865C127313418 @default.
- W2059995865 hasConceptScore W2059995865C151730666 @default.
- W2059995865 hasConceptScore W2059995865C152745839 @default.
- W2059995865 hasConceptScore W2059995865C153180895 @default.
- W2059995865 hasConceptScore W2059995865C154945302 @default.
- W2059995865 hasConceptScore W2059995865C165205528 @default.
- W2059995865 hasConceptScore W2059995865C172707124 @default.
- W2059995865 hasConceptScore W2059995865C175551986 @default.
- W2059995865 hasConceptScore W2059995865C196216189 @default.
- W2059995865 hasConceptScore W2059995865C27438332 @default.
- W2059995865 hasConceptScore W2059995865C2779343474 @default.
- W2059995865 hasConceptScore W2059995865C41008148 @default.
- W2059995865 hasConceptScore W2059995865C47432892 @default.
- W2059995865 hasConceptScore W2059995865C86803240 @default.
- W2059995865 hasConceptScore W2059995865C98045186 @default.
- W2059995865 hasIssue "11" @default.
- W2059995865 hasLocation W20599958651 @default.
- W2059995865 hasOpenAccess W2059995865 @default.
- W2059995865 hasPrimaryLocation W20599958651 @default.
- W2059995865 hasRelatedWork W1975632186 @default.
- W2059995865 hasRelatedWork W2036609560 @default.