Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060029648> ?p ?o ?g. }
- W2060029648 endingPage "4419" @default.
- W2060029648 startingPage "4406" @default.
- W2060029648 abstract "There are different ways to define similarity for grouping similar texts into clusters, as the concept of similarity may depend on the purpose of the task. For instance, in topic extraction similar texts mean those within the same semantic field, whereas in author recognition stylistic features should be considered. In this study, we introduce ways to classify texts employing concepts of complex networks, which may be able to capture syntactic, semantic and even pragmatic features. The interplay between the various metrics of the complex networks is analyzed with three applications, namely identification of machine translation (MT) systems, evaluation of quality of machine translated texts and authorship recognition. We shall show that topological features of the networks representing texts can enhance the ability to identify MT systems in particular cases. For evaluating the quality of MT texts, on the other hand, high correlation was obtained with methods capable of capturing the semantics. This was expected because the golden standards used are themselves based on word co-occurrence. Notwithstanding, the Katz similarity, which involves semantic and structure in the comparison of texts, achieved the highest correlation with the NIST measurement, indicating that in some cases the combination of both approaches can improve the ability to quantify quality in MT. In authorship recognition, again the topological features were relevant in some contexts, though for the books and authors analyzed good results were obtained with semantic features as well. Because hybrid approaches encompassing semantic and topological features have not been extensively used, we believe that the methodology proposed here may be useful to enhance text classification considerably, as it combines well-established strategies." @default.
- W2060029648 created "2016-06-24" @default.
- W2060029648 creator A5005669749 @default.
- W2060029648 creator A5017451457 @default.
- W2060029648 creator A5074263397 @default.
- W2060029648 date "2012-09-01" @default.
- W2060029648 modified "2023-10-13" @default.
- W2060029648 title "Structure–semantics interplay in complex networks and its effects on the predictability of similarity in texts" @default.
- W2060029648 cites W1659541576 @default.
- W2060029648 cites W1670263352 @default.
- W2060029648 cites W1874835824 @default.
- W2060029648 cites W1966961660 @default.
- W2060029648 cites W1973716318 @default.
- W2060029648 cites W1983578042 @default.
- W2060029648 cites W1996661510 @default.
- W2060029648 cites W2011079252 @default.
- W2060029648 cites W2016381774 @default.
- W2060029648 cites W2019096529 @default.
- W2060029648 cites W2029173860 @default.
- W2060029648 cites W2037705937 @default.
- W2060029648 cites W2042295190 @default.
- W2060029648 cites W2050645637 @default.
- W2060029648 cites W2056944867 @default.
- W2060029648 cites W2058956470 @default.
- W2060029648 cites W2064786700 @default.
- W2060029648 cites W2066275271 @default.
- W2060029648 cites W2070362834 @default.
- W2060029648 cites W2078396547 @default.
- W2060029648 cites W2081580037 @default.
- W2060029648 cites W2085625396 @default.
- W2060029648 cites W2088209891 @default.
- W2060029648 cites W2088946561 @default.
- W2060029648 cites W2093926207 @default.
- W2060029648 cites W2101105183 @default.
- W2060029648 cites W2102380637 @default.
- W2060029648 cites W2105544934 @default.
- W2060029648 cites W2114535528 @default.
- W2060029648 cites W2134657286 @default.
- W2060029648 cites W2147154374 @default.
- W2060029648 cites W2147858235 @default.
- W2060029648 cites W2153624566 @default.
- W2060029648 cites W2159762689 @default.
- W2060029648 cites W2162161511 @default.
- W2060029648 cites W4244238212 @default.
- W2060029648 cites W91636636 @default.
- W2060029648 doi "https://doi.org/10.1016/j.physa.2012.04.011" @default.
- W2060029648 hasPublicationYear "2012" @default.
- W2060029648 type Work @default.
- W2060029648 sameAs 2060029648 @default.
- W2060029648 citedByCount "47" @default.
- W2060029648 countsByYear W20600296482013 @default.
- W2060029648 countsByYear W20600296482015 @default.
- W2060029648 countsByYear W20600296482017 @default.
- W2060029648 countsByYear W20600296482018 @default.
- W2060029648 countsByYear W20600296482019 @default.
- W2060029648 countsByYear W20600296482020 @default.
- W2060029648 countsByYear W20600296482021 @default.
- W2060029648 countsByYear W20600296482022 @default.
- W2060029648 crossrefType "journal-article" @default.
- W2060029648 hasAuthorship W2060029648A5005669749 @default.
- W2060029648 hasAuthorship W2060029648A5017451457 @default.
- W2060029648 hasAuthorship W2060029648A5074263397 @default.
- W2060029648 hasBestOaLocation W20600296481 @default.
- W2060029648 hasConcept C103278499 @default.
- W2060029648 hasConcept C111472728 @default.
- W2060029648 hasConcept C115961682 @default.
- W2060029648 hasConcept C116834253 @default.
- W2060029648 hasConcept C130318100 @default.
- W2060029648 hasConcept C138885662 @default.
- W2060029648 hasConcept C154945302 @default.
- W2060029648 hasConcept C162324750 @default.
- W2060029648 hasConcept C184337299 @default.
- W2060029648 hasConcept C187736073 @default.
- W2060029648 hasConcept C199360897 @default.
- W2060029648 hasConcept C203005215 @default.
- W2060029648 hasConcept C204321447 @default.
- W2060029648 hasConcept C2779530757 @default.
- W2060029648 hasConcept C2780451532 @default.
- W2060029648 hasConcept C41008148 @default.
- W2060029648 hasConcept C59822182 @default.
- W2060029648 hasConcept C86803240 @default.
- W2060029648 hasConceptScore W2060029648C103278499 @default.
- W2060029648 hasConceptScore W2060029648C111472728 @default.
- W2060029648 hasConceptScore W2060029648C115961682 @default.
- W2060029648 hasConceptScore W2060029648C116834253 @default.
- W2060029648 hasConceptScore W2060029648C130318100 @default.
- W2060029648 hasConceptScore W2060029648C138885662 @default.
- W2060029648 hasConceptScore W2060029648C154945302 @default.
- W2060029648 hasConceptScore W2060029648C162324750 @default.
- W2060029648 hasConceptScore W2060029648C184337299 @default.
- W2060029648 hasConceptScore W2060029648C187736073 @default.
- W2060029648 hasConceptScore W2060029648C199360897 @default.
- W2060029648 hasConceptScore W2060029648C203005215 @default.
- W2060029648 hasConceptScore W2060029648C204321447 @default.
- W2060029648 hasConceptScore W2060029648C2779530757 @default.
- W2060029648 hasConceptScore W2060029648C2780451532 @default.
- W2060029648 hasConceptScore W2060029648C41008148 @default.
- W2060029648 hasConceptScore W2060029648C59822182 @default.