Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060122701> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2060122701 endingPage "455" @default.
- W2060122701 startingPage "446" @default.
- W2060122701 abstract "A novel framework based on the use of dynamic neural networks for data-based process monitoring, fault detection and diagnostics of non-linear systems with partial state measurement is presented in this paper. The proposed framework considers the presence of three kinds of states in a generic system model: states that can easily be measured in real time and in-situ, states that are difficult to measure online but can be measured offline to generate training data, and states that cannot be measured at all. The motivation for such a categorization of state variables comes from a wide class of problems in the manufacturing and chemical industries, wherein certain states are not measurable without expensive equipments or offline analysis while some other states may not be accessible at all. The framework makes use of a recurrent neural network for modeling the hidden dynamics of the system from available measurements and uses this model along with a non-linear observer to augment the information provided by the measured variables. The performance of the proposed method is verified on a synthetic problem as well as a benchmark simulation problem." @default.
- W2060122701 created "2016-06-24" @default.
- W2060122701 creator A5018167001 @default.
- W2060122701 creator A5021522143 @default.
- W2060122701 date "2013-01-01" @default.
- W2060122701 modified "2023-09-24" @default.
- W2060122701 title "A data-based framework for fault detection and diagnostics of non-linear systems with partial state measurement" @default.
- W2060122701 cites W1569513922 @default.
- W2060122701 cites W1973581271 @default.
- W2060122701 cites W1983043530 @default.
- W2060122701 cites W1997713206 @default.
- W2060122701 cites W2007855078 @default.
- W2060122701 cites W2011372029 @default.
- W2060122701 cites W2013213236 @default.
- W2060122701 cites W2022932590 @default.
- W2060122701 cites W2027531167 @default.
- W2060122701 cites W2030921047 @default.
- W2060122701 cites W2032429317 @default.
- W2060122701 cites W2039458530 @default.
- W2060122701 cites W2043438873 @default.
- W2060122701 cites W2056839090 @default.
- W2060122701 cites W2059035244 @default.
- W2060122701 cites W2069779093 @default.
- W2060122701 cites W2070830777 @default.
- W2060122701 cites W2076186907 @default.
- W2060122701 cites W2081989379 @default.
- W2060122701 cites W2093634328 @default.
- W2060122701 cites W2095941969 @default.
- W2060122701 cites W2098232303 @default.
- W2060122701 cites W2101051269 @default.
- W2060122701 cites W2123487311 @default.
- W2060122701 cites W2124470735 @default.
- W2060122701 cites W2155580451 @default.
- W2060122701 cites W2169347809 @default.
- W2060122701 cites W2539240792 @default.
- W2060122701 cites W2989426393 @default.
- W2060122701 doi "https://doi.org/10.1016/j.engappai.2012.09.004" @default.
- W2060122701 hasPublicationYear "2013" @default.
- W2060122701 type Work @default.
- W2060122701 sameAs 2060122701 @default.
- W2060122701 citedByCount "23" @default.
- W2060122701 countsByYear W20601227012013 @default.
- W2060122701 countsByYear W20601227012014 @default.
- W2060122701 countsByYear W20601227012015 @default.
- W2060122701 countsByYear W20601227012016 @default.
- W2060122701 countsByYear W20601227012017 @default.
- W2060122701 countsByYear W20601227012019 @default.
- W2060122701 countsByYear W20601227012020 @default.
- W2060122701 countsByYear W20601227012022 @default.
- W2060122701 crossrefType "journal-article" @default.
- W2060122701 hasAuthorship W2060122701A5018167001 @default.
- W2060122701 hasAuthorship W2060122701A5021522143 @default.
- W2060122701 hasConcept C11413529 @default.
- W2060122701 hasConcept C124101348 @default.
- W2060122701 hasConcept C152745839 @default.
- W2060122701 hasConcept C154945302 @default.
- W2060122701 hasConcept C172707124 @default.
- W2060122701 hasConcept C41008148 @default.
- W2060122701 hasConcept C48103436 @default.
- W2060122701 hasConceptScore W2060122701C11413529 @default.
- W2060122701 hasConceptScore W2060122701C124101348 @default.
- W2060122701 hasConceptScore W2060122701C152745839 @default.
- W2060122701 hasConceptScore W2060122701C154945302 @default.
- W2060122701 hasConceptScore W2060122701C172707124 @default.
- W2060122701 hasConceptScore W2060122701C41008148 @default.
- W2060122701 hasConceptScore W2060122701C48103436 @default.
- W2060122701 hasIssue "1" @default.
- W2060122701 hasLocation W20601227011 @default.
- W2060122701 hasOpenAccess W2060122701 @default.
- W2060122701 hasPrimaryLocation W20601227011 @default.
- W2060122701 hasRelatedWork W1979928167 @default.
- W2060122701 hasRelatedWork W2347219288 @default.
- W2060122701 hasRelatedWork W2348097614 @default.
- W2060122701 hasRelatedWork W2354822586 @default.
- W2060122701 hasRelatedWork W2358841807 @default.
- W2060122701 hasRelatedWork W2366221835 @default.
- W2060122701 hasRelatedWork W2382415248 @default.
- W2060122701 hasRelatedWork W2969723784 @default.
- W2060122701 hasRelatedWork W3107474891 @default.
- W2060122701 hasRelatedWork W3149424243 @default.
- W2060122701 hasVolume "26" @default.
- W2060122701 isParatext "false" @default.
- W2060122701 isRetracted "false" @default.
- W2060122701 magId "2060122701" @default.
- W2060122701 workType "article" @default.