Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060220440> ?p ?o ?g. }
- W2060220440 endingPage "318" @default.
- W2060220440 startingPage "287" @default.
- W2060220440 abstract "The clustering ensemble has emerged as a prominent method for improving robustness, stability, and accuracy of unsupervised classification solutions. It combines multiple partitions generated by different clustering algorithms into a single clustering solution. Genetic algorithms are known as methods with high ability to solve optimization problems including clustering. To date, significant progress has been contributed to find consensus clustering that will yield better results than existing clustering. This paper presents a survey of genetic algorithms designed for clustering ensembles. It begins with the introduction of clustering ensembles and clustering ensemble algorithms. Subsequently, this paper describes a number of suggested genetic-guided clustering ensemble algorithms, in particular the genotypes, fitness functions, and genetic operations. Next, clustering accuracies among the genetic-guided clustering ensemble algorithms is compared. This paper concludes that using genetic algorithms in clustering ensemble improves the clustering accuracy and addresses open questions subject to future research." @default.
- W2060220440 created "2016-06-24" @default.
- W2060220440 creator A5000398352 @default.
- W2060220440 creator A5030701134 @default.
- W2060220440 creator A5047323464 @default.
- W2060220440 creator A5054129309 @default.
- W2060220440 date "2011-01-13" @default.
- W2060220440 modified "2023-09-25" @default.
- W2060220440 title "A review: accuracy optimization in clustering ensembles using genetic algorithms" @default.
- W2060220440 cites W100104462 @default.
- W2060220440 cites W1510831919 @default.
- W2060220440 cites W1513608017 @default.
- W2060220440 cites W1527403175 @default.
- W2060220440 cites W1530289881 @default.
- W2060220440 cites W1536496053 @default.
- W2060220440 cites W1559701175 @default.
- W2060220440 cites W1561886765 @default.
- W2060220440 cites W1582617324 @default.
- W2060220440 cites W1602957698 @default.
- W2060220440 cites W1965059951 @default.
- W2060220440 cites W1977437243 @default.
- W2060220440 cites W1992419399 @default.
- W2060220440 cites W2004020960 @default.
- W2060220440 cites W2007408863 @default.
- W2060220440 cites W2032299564 @default.
- W2060220440 cites W2051925582 @default.
- W2060220440 cites W2059216481 @default.
- W2060220440 cites W2068558794 @default.
- W2060220440 cites W2070232376 @default.
- W2060220440 cites W2095561225 @default.
- W2060220440 cites W2097645701 @default.
- W2060220440 cites W2099032804 @default.
- W2060220440 cites W2103868202 @default.
- W2060220440 cites W2107208924 @default.
- W2060220440 cites W2114979880 @default.
- W2060220440 cites W2115346774 @default.
- W2060220440 cites W2120529703 @default.
- W2060220440 cites W2123980993 @default.
- W2060220440 cites W2136137122 @default.
- W2060220440 cites W2139280638 @default.
- W2060220440 cites W2139580617 @default.
- W2060220440 cites W2139588028 @default.
- W2060220440 cites W2143409359 @default.
- W2060220440 cites W2148504886 @default.
- W2060220440 cites W2153233077 @default.
- W2060220440 cites W2168055737 @default.
- W2060220440 cites W2171903410 @default.
- W2060220440 cites W30442425 @default.
- W2060220440 cites W3145877919 @default.
- W2060220440 cites W4292408320 @default.
- W2060220440 doi "https://doi.org/10.1007/s10462-010-9195-5" @default.
- W2060220440 hasPublicationYear "2011" @default.
- W2060220440 type Work @default.
- W2060220440 sameAs 2060220440 @default.
- W2060220440 citedByCount "27" @default.
- W2060220440 countsByYear W20602204402012 @default.
- W2060220440 countsByYear W20602204402013 @default.
- W2060220440 countsByYear W20602204402014 @default.
- W2060220440 countsByYear W20602204402015 @default.
- W2060220440 countsByYear W20602204402016 @default.
- W2060220440 countsByYear W20602204402018 @default.
- W2060220440 countsByYear W20602204402019 @default.
- W2060220440 countsByYear W20602204402020 @default.
- W2060220440 countsByYear W20602204402021 @default.
- W2060220440 countsByYear W20602204402022 @default.
- W2060220440 crossrefType "journal-article" @default.
- W2060220440 hasAuthorship W2060220440A5000398352 @default.
- W2060220440 hasAuthorship W2060220440A5030701134 @default.
- W2060220440 hasAuthorship W2060220440A5047323464 @default.
- W2060220440 hasAuthorship W2060220440A5054129309 @default.
- W2060220440 hasBestOaLocation W20602204402 @default.
- W2060220440 hasConcept C104047586 @default.
- W2060220440 hasConcept C119857082 @default.
- W2060220440 hasConcept C124101348 @default.
- W2060220440 hasConcept C149872217 @default.
- W2060220440 hasConcept C154945302 @default.
- W2060220440 hasConcept C17212007 @default.
- W2060220440 hasConcept C184509293 @default.
- W2060220440 hasConcept C186767784 @default.
- W2060220440 hasConcept C193143536 @default.
- W2060220440 hasConcept C27964816 @default.
- W2060220440 hasConcept C33704608 @default.
- W2060220440 hasConcept C41008148 @default.
- W2060220440 hasConcept C73555534 @default.
- W2060220440 hasConcept C94641424 @default.
- W2060220440 hasConceptScore W2060220440C104047586 @default.
- W2060220440 hasConceptScore W2060220440C119857082 @default.
- W2060220440 hasConceptScore W2060220440C124101348 @default.
- W2060220440 hasConceptScore W2060220440C149872217 @default.
- W2060220440 hasConceptScore W2060220440C154945302 @default.
- W2060220440 hasConceptScore W2060220440C17212007 @default.
- W2060220440 hasConceptScore W2060220440C184509293 @default.
- W2060220440 hasConceptScore W2060220440C186767784 @default.
- W2060220440 hasConceptScore W2060220440C193143536 @default.
- W2060220440 hasConceptScore W2060220440C27964816 @default.
- W2060220440 hasConceptScore W2060220440C33704608 @default.
- W2060220440 hasConceptScore W2060220440C41008148 @default.
- W2060220440 hasConceptScore W2060220440C73555534 @default.