Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060384097> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2060384097 endingPage "977" @default.
- W2060384097 startingPage "951" @default.
- W2060384097 abstract "A method of predicting the G values (the strength factor in dB), C80 values (the clarity factor in dB) and LF (the lateral energy fraction) in concert halls has been investigated. Constructional and acoustical data for 72 unoccupied concert halls, in various countries, were utilized for the neural network analyses. One source in two positions, in 42 of the halls, one source in three positions, in 13 of the halls, and a single source in 17 of the halls were chosen, together with a combination of receiver positions were available to train the neural networks. In all cases, the source used was omnidirectional. Results show that for the position-dependent strength factor, G, the accuracy of the neural network predictions is within the subjective difference limen, which is 1 dB. (i.e. ΔE/E=0.26 where E is energy density). Results also showed that the accuracy of neural network predictions for the clarity factor, C80, and the lateral energy fraction, LF, are within the subjective difference limens of ±0.5 dB and ±0.05, respectively. Eight concert halls were used to assess the neural network analysis method — by comparing neural network predictions with measured values and with predictions using Barron’s revised theory. In addition, three of the eight halls were used to compare neural network results with those obtained using by the hybrid ray tracing computer model ODEON 4.01. The results indicate that there is a good basis for using trained neural networks to predict the acoustical attributes G, C80 and LF at the schematic stage." @default.
- W2060384097 created "2016-06-24" @default.
- W2060384097 creator A5074516943 @default.
- W2060384097 creator A5077354829 @default.
- W2060384097 date "2001-08-01" @default.
- W2060384097 modified "2023-10-16" @default.
- W2060384097 title "The use of neural network analysis to predict the acoustic performance of large rooms Part II. Predictions of the acoustical attributes of concert halls utilizing measured data" @default.
- W2060384097 cites W2012644036 @default.
- W2060384097 cites W2017089128 @default.
- W2060384097 cites W2022894120 @default.
- W2060384097 cites W2028765500 @default.
- W2060384097 cites W2030474209 @default.
- W2060384097 cites W2053426107 @default.
- W2060384097 cites W2053627875 @default.
- W2060384097 cites W2059487395 @default.
- W2060384097 cites W2067010375 @default.
- W2060384097 cites W2071193667 @default.
- W2060384097 cites W2076510187 @default.
- W2060384097 cites W2080013251 @default.
- W2060384097 cites W2082313672 @default.
- W2060384097 cites W2084845426 @default.
- W2060384097 cites W2092267941 @default.
- W2060384097 cites W2092301528 @default.
- W2060384097 cites W2101927907 @default.
- W2060384097 cites W2131843135 @default.
- W2060384097 doi "https://doi.org/10.1016/s0003-682x(00)00085-2" @default.
- W2060384097 hasPublicationYear "2001" @default.
- W2060384097 type Work @default.
- W2060384097 sameAs 2060384097 @default.
- W2060384097 citedByCount "11" @default.
- W2060384097 countsByYear W20603840972013 @default.
- W2060384097 countsByYear W20603840972016 @default.
- W2060384097 countsByYear W20603840972020 @default.
- W2060384097 countsByYear W20603840972022 @default.
- W2060384097 crossrefType "journal-article" @default.
- W2060384097 hasAuthorship W2060384097A5074516943 @default.
- W2060384097 hasAuthorship W2060384097A5077354829 @default.
- W2060384097 hasConcept C105795698 @default.
- W2060384097 hasConcept C121332964 @default.
- W2060384097 hasConcept C154945302 @default.
- W2060384097 hasConcept C185592680 @default.
- W2060384097 hasConcept C186370098 @default.
- W2060384097 hasConcept C24890656 @default.
- W2060384097 hasConcept C2777146004 @default.
- W2060384097 hasConcept C33923547 @default.
- W2060384097 hasConcept C41008148 @default.
- W2060384097 hasConcept C50644808 @default.
- W2060384097 hasConcept C55493867 @default.
- W2060384097 hasConceptScore W2060384097C105795698 @default.
- W2060384097 hasConceptScore W2060384097C121332964 @default.
- W2060384097 hasConceptScore W2060384097C154945302 @default.
- W2060384097 hasConceptScore W2060384097C185592680 @default.
- W2060384097 hasConceptScore W2060384097C186370098 @default.
- W2060384097 hasConceptScore W2060384097C24890656 @default.
- W2060384097 hasConceptScore W2060384097C2777146004 @default.
- W2060384097 hasConceptScore W2060384097C33923547 @default.
- W2060384097 hasConceptScore W2060384097C41008148 @default.
- W2060384097 hasConceptScore W2060384097C50644808 @default.
- W2060384097 hasConceptScore W2060384097C55493867 @default.
- W2060384097 hasIssue "8" @default.
- W2060384097 hasLocation W20603840971 @default.
- W2060384097 hasOpenAccess W2060384097 @default.
- W2060384097 hasPrimaryLocation W20603840971 @default.
- W2060384097 hasRelatedWork W1981450519 @default.
- W2060384097 hasRelatedWork W1993352222 @default.
- W2060384097 hasRelatedWork W2070531986 @default.
- W2060384097 hasRelatedWork W2072719975 @default.
- W2060384097 hasRelatedWork W2084907488 @default.
- W2060384097 hasRelatedWork W2121084293 @default.
- W2060384097 hasRelatedWork W2386387936 @default.
- W2060384097 hasRelatedWork W2734766549 @default.
- W2060384097 hasRelatedWork W4281630529 @default.
- W2060384097 hasRelatedWork W4312747646 @default.
- W2060384097 hasVolume "62" @default.
- W2060384097 isParatext "false" @default.
- W2060384097 isRetracted "false" @default.
- W2060384097 magId "2060384097" @default.
- W2060384097 workType "article" @default.