Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060521024> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2060521024 endingPage "209" @default.
- W2060521024 startingPage "198" @default.
- W2060521024 abstract "The “tug-of-war (TOW) model” is a unique parallel search algorithm for solving the multi-armed bandit problem (BP), which was inspired by the photoavoidance behavior of a single-celled amoeboid organism, the true slime mold Physarum polycephalum [1-4]. “The cognitive medium access (CMA) problem,” which refers to multiuser channel allocations of the cognitive radio, can be interpreted as a “competitive multi-armed bandit problem (CBP) [5, 6].” Unlike the normal BP, the CBP considers a competitive situation in which more than one user selects a channel whose reward probability (probability of which channel is free) varies depending on the number and combination of the selecting users as indicated in a payoff matrix. Depending on the payoff matrix, the CBP provides a hard problem instance in which the users should not be attracted to the Nash equilibrium to achieve the “social maximum,” which is the most desirable state to obtain the maximum total score (throughput) for all the users. In this study, we propose two variants of the TOW model (solid type and liquid type) for the CBP toward developing a CMA protocol using a distributed control in uncertain environments. Using the minimum CBP cases where both the users choose a channel from the two considered channels, we show that the performance of our solid-type TOW model is better than that of the well-known upper confidence bound 1 (UCB1)-tuned algorithm, particularly for the hard problem instances. The aim of this study is to explore how the users can achieve the social maximum in a decentralized manner. We also show that our liquid-type TOW model, which introduces direct interactions among the users for avoiding mutual collisions, makes it possible to achieve the social maximum for general CBP instances." @default.
- W2060521024 created "2016-06-24" @default.
- W2060521024 creator A5011360511 @default.
- W2060521024 creator A5089003180 @default.
- W2060521024 date "2014-01-01" @default.
- W2060521024 modified "2023-10-16" @default.
- W2060521024 title "Amoeba-inspired algorithm for cognitive medium access" @default.
- W2060521024 cites W2003432911 @default.
- W2060521024 cites W2040461731 @default.
- W2060521024 cites W2076570286 @default.
- W2060521024 cites W2091941292 @default.
- W2060521024 cites W2100922150 @default.
- W2060521024 cites W2118051273 @default.
- W2060521024 cites W2146025745 @default.
- W2060521024 cites W2159050893 @default.
- W2060521024 cites W2168405694 @default.
- W2060521024 cites W4236847173 @default.
- W2060521024 cites W4239183374 @default.
- W2060521024 cites W4297563113 @default.
- W2060521024 doi "https://doi.org/10.1587/nolta.5.198" @default.
- W2060521024 hasPublicationYear "2014" @default.
- W2060521024 type Work @default.
- W2060521024 sameAs 2060521024 @default.
- W2060521024 citedByCount "32" @default.
- W2060521024 countsByYear W20605210242014 @default.
- W2060521024 countsByYear W20605210242015 @default.
- W2060521024 countsByYear W20605210242016 @default.
- W2060521024 countsByYear W20605210242018 @default.
- W2060521024 countsByYear W20605210242019 @default.
- W2060521024 countsByYear W20605210242020 @default.
- W2060521024 countsByYear W20605210242021 @default.
- W2060521024 countsByYear W20605210242022 @default.
- W2060521024 countsByYear W20605210242023 @default.
- W2060521024 crossrefType "journal-article" @default.
- W2060521024 hasAuthorship W2060521024A5011360511 @default.
- W2060521024 hasAuthorship W2060521024A5089003180 @default.
- W2060521024 hasBestOaLocation W20605210241 @default.
- W2060521024 hasConcept C106487976 @default.
- W2060521024 hasConcept C11413529 @default.
- W2060521024 hasConcept C126255220 @default.
- W2060521024 hasConcept C127162648 @default.
- W2060521024 hasConcept C144237770 @default.
- W2060521024 hasConcept C159985019 @default.
- W2060521024 hasConcept C192562407 @default.
- W2060521024 hasConcept C22171661 @default.
- W2060521024 hasConcept C31258907 @default.
- W2060521024 hasConcept C33923547 @default.
- W2060521024 hasConcept C41008148 @default.
- W2060521024 hasConcept C46814582 @default.
- W2060521024 hasConcept C80444323 @default.
- W2060521024 hasConceptScore W2060521024C106487976 @default.
- W2060521024 hasConceptScore W2060521024C11413529 @default.
- W2060521024 hasConceptScore W2060521024C126255220 @default.
- W2060521024 hasConceptScore W2060521024C127162648 @default.
- W2060521024 hasConceptScore W2060521024C144237770 @default.
- W2060521024 hasConceptScore W2060521024C159985019 @default.
- W2060521024 hasConceptScore W2060521024C192562407 @default.
- W2060521024 hasConceptScore W2060521024C22171661 @default.
- W2060521024 hasConceptScore W2060521024C31258907 @default.
- W2060521024 hasConceptScore W2060521024C33923547 @default.
- W2060521024 hasConceptScore W2060521024C41008148 @default.
- W2060521024 hasConceptScore W2060521024C46814582 @default.
- W2060521024 hasConceptScore W2060521024C80444323 @default.
- W2060521024 hasIssue "2" @default.
- W2060521024 hasLocation W20605210241 @default.
- W2060521024 hasOpenAccess W2060521024 @default.
- W2060521024 hasPrimaryLocation W20605210241 @default.
- W2060521024 hasRelatedWork W1180854317 @default.
- W2060521024 hasRelatedWork W2043374957 @default.
- W2060521024 hasRelatedWork W2053006745 @default.
- W2060521024 hasRelatedWork W2359317704 @default.
- W2060521024 hasRelatedWork W2374207109 @default.
- W2060521024 hasRelatedWork W2382303592 @default.
- W2060521024 hasRelatedWork W2421011736 @default.
- W2060521024 hasRelatedWork W2558486865 @default.
- W2060521024 hasRelatedWork W2605224496 @default.
- W2060521024 hasRelatedWork W2613113872 @default.
- W2060521024 hasVolume "5" @default.
- W2060521024 isParatext "false" @default.
- W2060521024 isRetracted "false" @default.
- W2060521024 magId "2060521024" @default.
- W2060521024 workType "article" @default.