Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060559653> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2060559653 endingPage "R890" @default.
- W2060559653 startingPage "R888" @default.
- W2060559653 abstract "A new study of how neurons in the human amygdala represent faces and their component features argues for a holistic representation. A new study of how neurons in the human amygdala represent faces and their component features argues for a holistic representation. Visual input from the retina travels through a cascade of processes in the neocortex to the highest echelons of the brain, eventually feeding into areas that govern memory, emotion, cognition and action. An important step to explaining these higher brain functions is to first understand and quantitatively characterize the neuronal circuits behind the transformation of the pixel-like visual input to the complex behaviorally relevant format in higher brain centers. As reported recently in Current Biology, Rutishauser et al. [1Rutishauser U. Tudusciuc O. Neumann D. Mamelak A. Heller C. Ross I. Philpott L. Sutherling W. Adolphs R. Single-unit responses selective for whole faces in the human amygdala.Curr. Biol. 2011; 21: 1654-1660Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar] courageously attacked this question by recording the activity of individual neurons in the human brain while subjects view and act upon images of faces. The researchers focussed their study on the amygdala, a region of the brain that receives direct visual input from the inferior temporal cortex and plays a central role in processing emotions [2Adolphs R. Tranel D. Damasio H. Damasio A. Impaired recognition of emotion in facial expressions following bilateral damage to the amygdala.Nature. 1994; 372: 669-672Crossref PubMed Scopus (1621) Google Scholar]. Higher brain centers that govern complex behavior are typically difficult to study, and the amygdala is no exception. Studies in rodents and non-human primates can take advantage of electrophysiological techniques to monitor the activity of individual neurons, but it is not always trivial to design behavioral paradigms that tap into the rich repertoire of human emotions. Non-invasive studies of the human amygdala suffer from poor spatial and/or temporal resolution. Rutishauser et al. [1Rutishauser U. Tudusciuc O. Neumann D. Mamelak A. Heller C. Ross I. Philpott L. Sutherling W. Adolphs R. Single-unit responses selective for whole faces in the human amygdala.Curr. Biol. 2011; 21: 1654-1660Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar] combined the best of both worlds by examining neuronal activity in epileptic patients in whom electrodes had been implanted for clinical reasons [3Engel A.K. Moll C.K. Fried I. Ojemann G.A. Invasive recordings from the human brain: clinical insights and beyond.Nat. Rev. Neurosci. 2005; 6: 35-47Crossref PubMed Scopus (252) Google Scholar, 4Kreiman G. Single neuron approaches to human vision and memories.Curr. Opin. Neurobiol. 2007; 17: 471-475Crossref PubMed Scopus (17) Google Scholar]. This type of recording can provide insights about human cognition at the level of individual neurons and local circuits. Previous single unit studies have revealed that neurons in the primate amygdala (in humans and monkeys) respond to complex visual shapes, including faces and other stimuli [5Fried I. MacDonald K.A. Wilson C. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects.Neuron. 1997; 18: 753-765Abstract Full Text Full Text PDF PubMed Scopus (395) Google Scholar, 6Gothard K.M. Battaglia F.P. Erickson C.A. Spitler K.M. Amaral D.G. Neural responses to facial expression and face identity in the monkey amygdala.J. Neurophysiol. 2007; 97: 1671-1683Crossref PubMed Scopus (236) Google Scholar, 7Leonard C.M. Rolls E.T. Wilson F.A.W. Baylis G.C. Neurons in the amygdala of the monkey with responses selective for faces.Behav. Brain Res. 1985; 15: 159-176Crossref PubMed Scopus (295) Google Scholar, 8Kreiman G. Koch C. Fried I. Category-specific visual responses of single neurons in the human medial temporal lobe.Nat. Neurosci. 2000; 3: 946-953Crossref PubMed Scopus (386) Google Scholar]. However, it was not clear whether these responses require visual presentation of the whole stimulus, or whether certain parts or features of the stimulus are sufficient to elicit a selective response. Because the amygdala is involved in recognizing emotions, the integration of different features into a whole percept may provide clues about how emotions are processed. Rutishauser et al. [1Rutishauser U. Tudusciuc O. Neumann D. Mamelak A. Heller C. Ross I. Philpott L. Sutherling W. Adolphs R. Single-unit responses selective for whole faces in the human amygdala.Curr. Biol. 2011; 21: 1654-1660Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar] hypothesized that the representation in the amygdala may have ‘holistic’ characteristics: that is, that neurons might be particularly sensitive to whole stimuli as opposed to stimulus parts. The authors used an experimental paradigm in which face images are presented through ‘bubbles’ such that only partial information is available to the viewer, who has to make a categorical discrimination based on the input. What do neurons in the amygdala say about all this holistic business? Rutishauser et al. [1Rutishauser U. Tudusciuc O. Neumann D. Mamelak A. Heller C. Ross I. Philpott L. Sutherling W. Adolphs R. Single-unit responses selective for whole faces in the human amygdala.Curr. Biol. 2011; 21: 1654-1660Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar] found that several amygdala neurons prefer whole stimuli as opposed to specific parts or features. These neurons show surprising sensitivity in their firing rate responses to small degrees of occlusion in the stimuli, suggesting a ‘holistic’ representation. The responses are not necessarily monotonic and often defy our intuitions. In fact, the firing activity in response to stimulus parts does not reveal any immediately obvious relationship to the responses to the whole stimuli: the authors argue that the former cannot predict the latter. Intriguingly, in many instances, more information leads to smaller responses. Given these puzzling observations, it is worth pondering the visual inputs to the amygdala and the degree to which the incoming information reflects features or wholes or both. Visual shape information is conveyed to the amygdala primarily through regions in inferior temporal cortex in monkeys [9Cheng K. Saleem K.S. Tanaka K. Organization of corticostriatal and corticoamygdalar projections arising from the anterior inferotemporal area TE of the macaque monkey: A Phaseolus vulgaris leucoagglutinin study.J. Neurosci. 1997; 17: 7902-7925PubMed Google Scholar] (less is known about the detailed neuroanatomical connections in humans). One possibility is that the input provides information about features and is combined in the amygdala in order to interpret the emotions conveyed by the whole stimulus. This notion is consistent with the results of several neurophysiological recordings in the macaque monkey inferior temporal cortex, where neurons seem to respond to complex shapes and features (for example, [10Kovacs G. Vogels R. Orban G.A. Selectivity of macaque inferior temporal neurons for partially occluded shapes.J. Neurosci. 1995; 15: 1984-1997PubMed Google Scholar, 11Logothetis N.K. Sheinberg D.L. Visual object recognition.Annu. Rev. Neurosci. 1996; 19: 577-621Crossref PubMed Scopus (804) Google Scholar, 12Connor C.E. Brincat S.L. Pasupathy A. Transformation of shape information in the ventral pathway.Curr. Opin. Neurobiol. 2007; 17: 140-147Crossref PubMed Scopus (134) Google Scholar, 13Nielsen K. Logothetis N. Rainer G. Dissociation between LFP and spiking activity in macaque inferior temporal cortex reveals diagnostic parts-based encoding of complex objects.J. Neurosci. 2006; 26: 9639-9645Crossref PubMed Scopus (52) Google Scholar] among many others). Alternatively, regions of inferior temporal cortex that feed into the amygdala may contain neurons that share some properties with the ones reported by Rutishauser et al. [1Rutishauser U. Tudusciuc O. Neumann D. Mamelak A. Heller C. Ross I. Philpott L. Sutherling W. Adolphs R. Single-unit responses selective for whole faces in the human amygdala.Curr. Biol. 2011; 21: 1654-1660Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar], such as enhanced responses to whole objects [14Logothetis N.K. Object recognition: holistic representations in the monkey brain.Spat. Vis. 2000; 13: 165-178Crossref PubMed Scopus (19) Google Scholar]. It is not easy to interpret the neurophysiological responses without the aid of clear theoretical and computational models. The problem of object completion from partial information has received significant attention in the computational neuroscience literature. Object completion is relevant to the current study because the images were seen through bubbles, making object recognition from partial information a necessary step for a putative ‘holistic’ representation. Attractor networks show a remarkable ability to complete patterns by driving activity according to well-specified dynamical rules that guide the system from arbitrary starting points towards stored memories [15Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities.Proc. Natl. Acad. Sci. USA. 1982; 79: 2554-2558Crossref PubMed Scopus (10962) Google Scholar]. Some authors have speculated that the neuronal responses in the hippocampus are reminiscent of the dynamical patterns described by attractor networks [16Deco G. Rolls E.T. Computational Neuroscience of Vision. Oxford Oxford University Press, 2004Google Scholar]. The extent to which these similarities extend to the amygdala are not clear. These attractor network models rely on massive recurrent connectivity and contrast with other computational architectures where features are combined in purely feed-forward hierarchical fashion (for example, [17Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.Biol. Cybernet. 1980; 36: 193-202Crossref PubMed Scopus (2302) Google Scholar, 18Riesenhuber M. Poggio T. Hierarchical models of object recognition in cortex.Nat. Neurosci. 1999; 2: 1019-1025Crossref PubMed Scopus (2161) Google Scholar]). Several computational models of the ventral visual stream progressively build neurons that respond to more complex features using input from the parts represented in the previous layer [17Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.Biol. Cybernet. 1980; 36: 193-202Crossref PubMed Scopus (2302) Google Scholar, 18Riesenhuber M. Poggio T. Hierarchical models of object recognition in cortex.Nat. Neurosci. 1999; 2: 1019-1025Crossref PubMed Scopus (2161) Google Scholar, 19Lee D.D. Seung H.S. Learning the parts of objects by non-negative matrix factorization.Nature. 1999; 401: 788-791Crossref PubMed Scopus (8227) Google Scholar, 20Serre T. Kreiman G. Kouh M. Cadieu C. Knoblich U. Poggio T. A quantitative theory of immediate visual recognition.Prog. Brain Res. 2007; 165C: 33-56Crossref Scopus (151) Google Scholar]. It is conceivable (but far from clear) that hierarchical feature-based representations throughout the ventral visual stream encounter attractor network architectures at the highest echelons. It will be interesting and important for the field to reflect upon the type of computational principles that can give rise to the variety and non-monotonic nature of the responses reported by Rutishauser et al. [1Rutishauser U. Tudusciuc O. Neumann D. Mamelak A. Heller C. Ross I. Philpott L. Sutherling W. Adolphs R. Single-unit responses selective for whole faces in the human amygdala.Curr. Biol. 2011; 21: 1654-1660Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar]. The computational models also highlight the difficulties inherent in definitions about wholes and parts. In the current study [1Rutishauser U. Tudusciuc O. Neumann D. Mamelak A. Heller C. Ross I. Philpott L. Sutherling W. Adolphs R. Single-unit responses selective for whole faces in the human amygdala.Curr. Biol. 2011; 21: 1654-1660Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar], as in many other studies, there is an anthropomorphic distinction between wholes and parts. Further inspection shows that these definitions are far from trivial. Isn't a face a part of a whole individual? Or why not consider the eyes as a separate whole? Is ‘F’ a whole letter or is it part of the letter ‘E'? Perhaps the distinction between features and wholes can be accounted for at least partly, by experience with particular combinations of features that tend to appear together in certain configurations. Simple null models may not know about ‘whole objects’, often work in feature spaces that are indifferent to the charm of faces and may not necessarily be able to distinguish emotions in the images. Inasmuch as these null models fail to explain the bewildering complexity and beauty of the neurophysiology in the amygdala, the current study elegantly forces us to go back and build more elaborate theories and algorithms. One of the nice aspects of doing science is that good work can lead to more work. Thus, several questions emerge from the work of Rutishauser et al. [1Rutishauser U. Tudusciuc O. Neumann D. Mamelak A. Heller C. Ross I. Philpott L. Sutherling W. Adolphs R. Single-unit responses selective for whole faces in the human amygdala.Curr. Biol. 2011; 21: 1654-1660Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar]. As outlined above, the definition of ‘wholes’ and ‘parts’ is not trivial. It seems important to further understand the visual input to areas such as the amygdala so that we can better describe what computational properties are unique to the amygdala and which ones are inherited from previous processing. The authors focus on face images, but the study leaves open the possibility that the amygdala can have similar responses to non-face objects. Is the “holistic” nature of the representation limited to faces [14Logothetis N.K. Object recognition: holistic representations in the monkey brain.Spat. Vis. 2000; 13: 165-178Crossref PubMed Scopus (19) Google Scholar]? The dynamics of the neuronal responses may provide further insights regarding the computational principles behind recognition and object completion. What type of computational models can give rise to the non-intuitive responses described in this study? The inspiring work of Rutishauser et al. [1Rutishauser U. Tudusciuc O. Neumann D. Mamelak A. Heller C. Ross I. Philpott L. Sutherling W. Adolphs R. Single-unit responses selective for whole faces in the human amygdala.Curr. Biol. 2011; 21: 1654-1660Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar] opens the doors to a rich set of questions that deserve further investigation." @default.
- W2060559653 created "2016-06-24" @default.
- W2060559653 creator A5065771638 @default.
- W2060559653 creator A5089829380 @default.
- W2060559653 date "2011-11-01" @default.
- W2060559653 modified "2023-09-28" @default.
- W2060559653 title "Face Recognition: Vision and Emotions beyond the Bubble" @default.
- W2060559653 cites W1538382133 @default.
- W2060559653 cites W1591076954 @default.
- W2060559653 cites W1593057674 @default.
- W2060559653 cites W1596318652 @default.
- W2060559653 cites W1895822363 @default.
- W2060559653 cites W1902027874 @default.
- W2060559653 cites W1967681807 @default.
- W2060559653 cites W1969769253 @default.
- W2060559653 cites W1970792572 @default.
- W2060559653 cites W1985106404 @default.
- W2060559653 cites W1992834379 @default.
- W2060559653 cites W2003766373 @default.
- W2060559653 cites W2003836944 @default.
- W2060559653 cites W2023091089 @default.
- W2060559653 cites W2035518691 @default.
- W2060559653 cites W2052142966 @default.
- W2060559653 cites W2055433500 @default.
- W2060559653 cites W2056371048 @default.
- W2060559653 cites W2058736264 @default.
- W2060559653 cites W2060307080 @default.
- W2060559653 cites W2065511049 @default.
- W2060559653 cites W2078139702 @default.
- W2060559653 cites W2084588382 @default.
- W2060559653 cites W2101926813 @default.
- W2060559653 cites W2123213117 @default.
- W2060559653 cites W2127371167 @default.
- W2060559653 cites W2128084896 @default.
- W2060559653 cites W2144288933 @default.
- W2060559653 cites W2144366025 @default.
- W2060559653 cites W2144730066 @default.
- W2060559653 cites W2148226776 @default.
- W2060559653 cites W2149194912 @default.
- W2060559653 doi "https://doi.org/10.1016/j.cub.2011.09.020" @default.
- W2060559653 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4122972" @default.
- W2060559653 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22075428" @default.
- W2060559653 hasPublicationYear "2011" @default.
- W2060559653 type Work @default.
- W2060559653 sameAs 2060559653 @default.
- W2060559653 citedByCount "3" @default.
- W2060559653 countsByYear W20605596532016 @default.
- W2060559653 countsByYear W20605596532019 @default.
- W2060559653 countsByYear W20605596532020 @default.
- W2060559653 crossrefType "journal-article" @default.
- W2060559653 hasAuthorship W2060559653A5065771638 @default.
- W2060559653 hasAuthorship W2060559653A5089829380 @default.
- W2060559653 hasBestOaLocation W20605596531 @default.
- W2060559653 hasConcept C144024400 @default.
- W2060559653 hasConcept C153180895 @default.
- W2060559653 hasConcept C15744967 @default.
- W2060559653 hasConcept C180747234 @default.
- W2060559653 hasConcept C188147891 @default.
- W2060559653 hasConcept C2779304628 @default.
- W2060559653 hasConcept C31510193 @default.
- W2060559653 hasConcept C31972630 @default.
- W2060559653 hasConcept C36289849 @default.
- W2060559653 hasConcept C41008148 @default.
- W2060559653 hasConcept C86803240 @default.
- W2060559653 hasConceptScore W2060559653C144024400 @default.
- W2060559653 hasConceptScore W2060559653C153180895 @default.
- W2060559653 hasConceptScore W2060559653C15744967 @default.
- W2060559653 hasConceptScore W2060559653C180747234 @default.
- W2060559653 hasConceptScore W2060559653C188147891 @default.
- W2060559653 hasConceptScore W2060559653C2779304628 @default.
- W2060559653 hasConceptScore W2060559653C31510193 @default.
- W2060559653 hasConceptScore W2060559653C31972630 @default.
- W2060559653 hasConceptScore W2060559653C36289849 @default.
- W2060559653 hasConceptScore W2060559653C41008148 @default.
- W2060559653 hasConceptScore W2060559653C86803240 @default.
- W2060559653 hasIssue "21" @default.
- W2060559653 hasLocation W20605596531 @default.
- W2060559653 hasLocation W20605596532 @default.
- W2060559653 hasLocation W20605596533 @default.
- W2060559653 hasLocation W20605596534 @default.
- W2060559653 hasOpenAccess W2060559653 @default.
- W2060559653 hasPrimaryLocation W20605596531 @default.
- W2060559653 hasRelatedWork W1525834447 @default.
- W2060559653 hasRelatedWork W1560697087 @default.
- W2060559653 hasRelatedWork W1989039360 @default.
- W2060559653 hasRelatedWork W2142421467 @default.
- W2060559653 hasRelatedWork W2146295394 @default.
- W2060559653 hasRelatedWork W2607108626 @default.
- W2060559653 hasRelatedWork W2764781308 @default.
- W2060559653 hasRelatedWork W2908959303 @default.
- W2060559653 hasRelatedWork W2951838202 @default.
- W2060559653 hasRelatedWork W2098994635 @default.
- W2060559653 hasVolume "21" @default.
- W2060559653 isParatext "false" @default.
- W2060559653 isRetracted "false" @default.
- W2060559653 magId "2060559653" @default.
- W2060559653 workType "article" @default.