Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060587541> ?p ?o ?g. }
- W2060587541 endingPage "3983" @default.
- W2060587541 startingPage "3963" @default.
- W2060587541 abstract "This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of “Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems”. In our third paper, we demonstrated via speciation–solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90–300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals (Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction (ΔGr) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system (Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case (Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates. Results reported in this communication lend support to our hypothesis that slow secondary mineral precipitation explains part of the well-known apparent discrepancy between lab measured and field estimated feldspar dissolution rates (Zhu et al., 2004). Here we show how the slow secondary mineral precipitation provides a regulator to explain why the systems are held close to equilibrium and show how the most often-quoted “near equilibrium” explanation for an apparent field-lab discrepancy can work quantitatively. The substantiated hypothesis now offers the promise of reconciling part of the apparent field-lab discrepancy." @default.
- W2060587541 created "2016-06-24" @default.
- W2060587541 creator A5024776089 @default.
- W2060587541 creator A5029337922 @default.
- W2060587541 creator A5061671357 @default.
- W2060587541 creator A5084753403 @default.
- W2060587541 date "2010-07-01" @default.
- W2060587541 modified "2023-10-03" @default.
- W2060587541 title "Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths" @default.
- W2060587541 cites W1481888766 @default.
- W2060587541 cites W1607832304 @default.
- W2060587541 cites W1830358639 @default.
- W2060587541 cites W1965571863 @default.
- W2060587541 cites W1967251656 @default.
- W2060587541 cites W1968918182 @default.
- W2060587541 cites W1971178834 @default.
- W2060587541 cites W1971461287 @default.
- W2060587541 cites W1972595903 @default.
- W2060587541 cites W1973458627 @default.
- W2060587541 cites W1977911061 @default.
- W2060587541 cites W1979801153 @default.
- W2060587541 cites W1980728284 @default.
- W2060587541 cites W1986589104 @default.
- W2060587541 cites W1987536225 @default.
- W2060587541 cites W1987558327 @default.
- W2060587541 cites W1988937091 @default.
- W2060587541 cites W1989652062 @default.
- W2060587541 cites W1991620953 @default.
- W2060587541 cites W1996768414 @default.
- W2060587541 cites W1999165439 @default.
- W2060587541 cites W2001981172 @default.
- W2060587541 cites W2005919559 @default.
- W2060587541 cites W2009916340 @default.
- W2060587541 cites W2010352499 @default.
- W2060587541 cites W2010621570 @default.
- W2060587541 cites W2011254969 @default.
- W2060587541 cites W2019937345 @default.
- W2060587541 cites W2023722096 @default.
- W2060587541 cites W2026404178 @default.
- W2060587541 cites W2026794368 @default.
- W2060587541 cites W2030134340 @default.
- W2060587541 cites W2032677315 @default.
- W2060587541 cites W2035803994 @default.
- W2060587541 cites W2037726529 @default.
- W2060587541 cites W2038229072 @default.
- W2060587541 cites W2039092794 @default.
- W2060587541 cites W2044309566 @default.
- W2060587541 cites W2047223613 @default.
- W2060587541 cites W2047254543 @default.
- W2060587541 cites W2048175561 @default.
- W2060587541 cites W2049380594 @default.
- W2060587541 cites W2050525089 @default.
- W2060587541 cites W2052767116 @default.
- W2060587541 cites W2057921967 @default.
- W2060587541 cites W2058679923 @default.
- W2060587541 cites W2060680908 @default.
- W2060587541 cites W2061394240 @default.
- W2060587541 cites W2062634293 @default.
- W2060587541 cites W2066287806 @default.
- W2060587541 cites W2073554391 @default.
- W2060587541 cites W2075849155 @default.
- W2060587541 cites W2075992470 @default.
- W2060587541 cites W2084283421 @default.
- W2060587541 cites W2085468600 @default.
- W2060587541 cites W2086234831 @default.
- W2060587541 cites W2091651204 @default.
- W2060587541 cites W2098120714 @default.
- W2060587541 cites W2109052222 @default.
- W2060587541 cites W2109075239 @default.
- W2060587541 cites W210964981 @default.
- W2060587541 cites W2124671912 @default.
- W2060587541 cites W2135226847 @default.
- W2060587541 cites W2172127771 @default.
- W2060587541 cites W2314937256 @default.
- W2060587541 cites W2326809482 @default.
- W2060587541 cites W2330493157 @default.
- W2060587541 cites W2403936720 @default.
- W2060587541 cites W2462377297 @default.
- W2060587541 doi "https://doi.org/10.1016/j.gca.2010.04.012" @default.
- W2060587541 hasPublicationYear "2010" @default.
- W2060587541 type Work @default.
- W2060587541 sameAs 2060587541 @default.
- W2060587541 citedByCount "78" @default.
- W2060587541 countsByYear W20605875412012 @default.
- W2060587541 countsByYear W20605875412013 @default.
- W2060587541 countsByYear W20605875412014 @default.
- W2060587541 countsByYear W20605875412015 @default.
- W2060587541 countsByYear W20605875412016 @default.
- W2060587541 countsByYear W20605875412017 @default.
- W2060587541 countsByYear W20605875412018 @default.
- W2060587541 countsByYear W20605875412019 @default.
- W2060587541 countsByYear W20605875412020 @default.
- W2060587541 countsByYear W20605875412021 @default.
- W2060587541 countsByYear W20605875412022 @default.
- W2060587541 countsByYear W20605875412023 @default.
- W2060587541 crossrefType "journal-article" @default.
- W2060587541 hasAuthorship W2060587541A5024776089 @default.
- W2060587541 hasAuthorship W2060587541A5029337922 @default.