Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060600497> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2060600497 endingPage "51" @default.
- W2060600497 startingPage "40" @default.
- W2060600497 abstract "Color information is useful in vision-based feature detection, particularly for food processing applications where color variability often renders grayscale-based machine-vision algorithms that are difficult or impossible to work with. This paper presents a color machine vision algorithm that consists of two components. The first creates an artificial color contrast as a prefilter that aims at highlighting the target while suppressing its surroundings. The second, referred to here as the statistically based fast bounded box (SFBB), utilizes the principal component analysis technique to characterize target features in color space from a set of training data so that the color classification can be performed accurately and efficiently. We evaluate the algorithm in the context of food processing applications and examine the effects of the color characterization on computational efficiency by comparing the proposed solution against two commonly used color classification algorithms; a neural-network classifier and the support vector machine. Comparison among the three methods demonstrates that statistically based fast bounded box is relatively easy to train, efficient, and effective since with sufficient training data, it does not require any additional optimization steps; these advantages make SFBB an ideal candidate for high-speed automation involving live and/or natural objects. Note to Practitioners-Variability in natural objects is usually several orders of magnitude higher than that for manufactured goods and has remained a challenge. As a result, most solutions to inspection problems of natural products today still have humans in the loop. One of the factors influencing the success rate of color machine vision in detecting a target is its ability to characterize colors. When unrelated features are very close to the target in the color space, which may not pose a significant problem to an experienced operator, they appear as noise and often result in false detection. This paper illustrates the applicability of the algorithm with a number of representative automation problems in the context of food processing applications. As demonstrated experimentally, the artificial color contrast and statistically based fast bounded box methods can significantly improve the success rate of the detection by reducing the standard deviation of both the target and noise pixels, enlarging the separation between feature clusters in color space, and more tightly characterize the feature color from its background. The algorithm presented here has several advantages, including simplicity in training and fast classification, since only three simple checks of rectangular bounds are performed" @default.
- W2060600497 created "2016-06-24" @default.
- W2060600497 creator A5039145218 @default.
- W2060600497 creator A5069771802 @default.
- W2060600497 creator A5083153534 @default.
- W2060600497 date "2007-01-01" @default.
- W2060600497 modified "2023-10-16" @default.
- W2060600497 title "Effects of Classification Methods on Color-Based Feature Detection With Food Processing Applications" @default.
- W2060600497 cites W1539843222 @default.
- W2060600497 cites W1964218480 @default.
- W2060600497 cites W1967315919 @default.
- W2060600497 cites W2017753243 @default.
- W2060600497 cites W2028810418 @default.
- W2060600497 cites W2050679782 @default.
- W2060600497 cites W2055913343 @default.
- W2060600497 cites W2074754194 @default.
- W2060600497 cites W2087347434 @default.
- W2060600497 cites W2089325630 @default.
- W2060600497 cites W2098693229 @default.
- W2060600497 cites W2098947662 @default.
- W2060600497 cites W2100539965 @default.
- W2060600497 cites W2105905951 @default.
- W2060600497 cites W2113912885 @default.
- W2060600497 cites W2115689562 @default.
- W2060600497 cites W2124351082 @default.
- W2060600497 cites W2125901714 @default.
- W2060600497 cites W2126178892 @default.
- W2060600497 cites W2139212933 @default.
- W2060600497 cites W2160829192 @default.
- W2060600497 cites W2168909616 @default.
- W2060600497 cites W2212384750 @default.
- W2060600497 cites W4232282293 @default.
- W2060600497 cites W4292023222 @default.
- W2060600497 doi "https://doi.org/10.1109/tase.2006.874972" @default.
- W2060600497 hasPublicationYear "2007" @default.
- W2060600497 type Work @default.
- W2060600497 sameAs 2060600497 @default.
- W2060600497 citedByCount "29" @default.
- W2060600497 countsByYear W20606004972012 @default.
- W2060600497 countsByYear W20606004972013 @default.
- W2060600497 countsByYear W20606004972014 @default.
- W2060600497 countsByYear W20606004972016 @default.
- W2060600497 countsByYear W20606004972018 @default.
- W2060600497 countsByYear W20606004972019 @default.
- W2060600497 countsByYear W20606004972020 @default.
- W2060600497 countsByYear W20606004972021 @default.
- W2060600497 countsByYear W20606004972022 @default.
- W2060600497 countsByYear W20606004972023 @default.
- W2060600497 crossrefType "journal-article" @default.
- W2060600497 hasAuthorship W2060600497A5039145218 @default.
- W2060600497 hasAuthorship W2060600497A5069771802 @default.
- W2060600497 hasAuthorship W2060600497A5083153534 @default.
- W2060600497 hasConcept C115961682 @default.
- W2060600497 hasConcept C119857082 @default.
- W2060600497 hasConcept C12267149 @default.
- W2060600497 hasConcept C153180895 @default.
- W2060600497 hasConcept C154945302 @default.
- W2060600497 hasConcept C2961294 @default.
- W2060600497 hasConcept C31972630 @default.
- W2060600497 hasConcept C41008148 @default.
- W2060600497 hasConcept C52622490 @default.
- W2060600497 hasConcept C5339829 @default.
- W2060600497 hasConcept C75294576 @default.
- W2060600497 hasConcept C95623464 @default.
- W2060600497 hasConceptScore W2060600497C115961682 @default.
- W2060600497 hasConceptScore W2060600497C119857082 @default.
- W2060600497 hasConceptScore W2060600497C12267149 @default.
- W2060600497 hasConceptScore W2060600497C153180895 @default.
- W2060600497 hasConceptScore W2060600497C154945302 @default.
- W2060600497 hasConceptScore W2060600497C2961294 @default.
- W2060600497 hasConceptScore W2060600497C31972630 @default.
- W2060600497 hasConceptScore W2060600497C41008148 @default.
- W2060600497 hasConceptScore W2060600497C52622490 @default.
- W2060600497 hasConceptScore W2060600497C5339829 @default.
- W2060600497 hasConceptScore W2060600497C75294576 @default.
- W2060600497 hasConceptScore W2060600497C95623464 @default.
- W2060600497 hasIssue "1" @default.
- W2060600497 hasLocation W20606004971 @default.
- W2060600497 hasOpenAccess W2060600497 @default.
- W2060600497 hasPrimaryLocation W20606004971 @default.
- W2060600497 hasRelatedWork W1483916194 @default.
- W2060600497 hasRelatedWork W1997235926 @default.
- W2060600497 hasRelatedWork W2005234362 @default.
- W2060600497 hasRelatedWork W2053208463 @default.
- W2060600497 hasRelatedWork W2082216369 @default.
- W2060600497 hasRelatedWork W2150382074 @default.
- W2060600497 hasRelatedWork W2162970382 @default.
- W2060600497 hasRelatedWork W2357620620 @default.
- W2060600497 hasRelatedWork W2586783863 @default.
- W2060600497 hasRelatedWork W4255532429 @default.
- W2060600497 hasVolume "4" @default.
- W2060600497 isParatext "false" @default.
- W2060600497 isRetracted "false" @default.
- W2060600497 magId "2060600497" @default.
- W2060600497 workType "article" @default.