Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060754687> ?p ?o ?g. }
- W2060754687 endingPage "1820" @default.
- W2060754687 startingPage "1808" @default.
- W2060754687 abstract "This paper presents a novel preprocessing scheme to improve the prediction of sand fraction from multiple seismic attributes such as seismic impedance, amplitude, and frequency using machine learning and information filtering. The available well logs along with the three-dimensional (3-D) seismic data have been used to benchmark the proposed preprocessing stage using a methodology that primarily consists of three steps: 1) preprocessing; 2) training; and 3) postprocessing. An artificial neural network (ANN) with conjugate-gradient learning algorithm has been used to model the sand fraction. The available sand fraction data from the high-resolution well logs have far more information content than the low-resolution seismic attributes. Therefore, regularization schemes based on Fourier transform (FT), wavelet decomposition (WD), and empirical mode decomposition (EMD) have been proposed to shape the high-resolution sand fraction data for effective machine learning. The input data sets have been segregated into training, testing, and validation sets. The test results are primarily used to check different network structures and activation function performances. Once the network passes the testing phase with an acceptable performance in terms of the selected evaluators, the validation phase follows. In the validation stage, the prediction model is tested against unseen data. The network yielding satisfactory performance in the validation stage is used to predict lithological properties from seismic attributes throughout a given volume. Finally, a postprocessing scheme using 3-D spatial filtering is implemented for smoothing the sand fraction in the volume. Prediction of lithological properties using this framework is helpful for reservoir characterization (RC)." @default.
- W2060754687 created "2016-06-24" @default.
- W2060754687 creator A5005881991 @default.
- W2060754687 creator A5045754565 @default.
- W2060754687 creator A5059212307 @default.
- W2060754687 date "2015-04-01" @default.
- W2060754687 modified "2023-10-18" @default.
- W2060754687 title "A Novel Preprocessing Scheme to Improve the Prediction of Sand Fraction From Seismic Attributes Using Neural Networks" @default.
- W2060754687 cites W1946342668 @default.
- W2060754687 cites W1969065421 @default.
- W2060754687 cites W1970352604 @default.
- W2060754687 cites W1973232110 @default.
- W2060754687 cites W1976296531 @default.
- W2060754687 cites W1993252592 @default.
- W2060754687 cites W1996021349 @default.
- W2060754687 cites W1998442441 @default.
- W2060754687 cites W1999683871 @default.
- W2060754687 cites W2000605490 @default.
- W2060754687 cites W2007221293 @default.
- W2060754687 cites W2012358846 @default.
- W2060754687 cites W2024392312 @default.
- W2060754687 cites W2029803196 @default.
- W2060754687 cites W2036297892 @default.
- W2060754687 cites W2044227719 @default.
- W2060754687 cites W2044894017 @default.
- W2060754687 cites W2048820530 @default.
- W2060754687 cites W2049442567 @default.
- W2060754687 cites W2049761669 @default.
- W2060754687 cites W2051812123 @default.
- W2060754687 cites W2067681708 @default.
- W2060754687 cites W2072642501 @default.
- W2060754687 cites W2078299992 @default.
- W2060754687 cites W2085037356 @default.
- W2060754687 cites W2096032932 @default.
- W2060754687 cites W2096990985 @default.
- W2060754687 cites W2099111195 @default.
- W2060754687 cites W2115431794 @default.
- W2060754687 cites W2124186372 @default.
- W2060754687 cites W2130486630 @default.
- W2060754687 cites W2136226282 @default.
- W2060754687 cites W2147393756 @default.
- W2060754687 cites W2149415870 @default.
- W2060754687 cites W2156483112 @default.
- W2060754687 cites W2163175114 @default.
- W2060754687 cites W2165356354 @default.
- W2060754687 cites W2165876777 @default.
- W2060754687 cites W2169721303 @default.
- W2060754687 cites W2170296040 @default.
- W2060754687 cites W2171680516 @default.
- W2060754687 cites W2993759822 @default.
- W2060754687 cites W3125537303 @default.
- W2060754687 cites W4253245960 @default.
- W2060754687 cites W4255272544 @default.
- W2060754687 cites W4298352105 @default.
- W2060754687 cites W4376849658 @default.
- W2060754687 cites W2065042352 @default.
- W2060754687 cites W3141408015 @default.
- W2060754687 doi "https://doi.org/10.1109/jstars.2015.2404808" @default.
- W2060754687 hasPublicationYear "2015" @default.
- W2060754687 type Work @default.
- W2060754687 sameAs 2060754687 @default.
- W2060754687 citedByCount "30" @default.
- W2060754687 countsByYear W20607546872015 @default.
- W2060754687 countsByYear W20607546872016 @default.
- W2060754687 countsByYear W20607546872017 @default.
- W2060754687 countsByYear W20607546872018 @default.
- W2060754687 countsByYear W20607546872019 @default.
- W2060754687 countsByYear W20607546872020 @default.
- W2060754687 countsByYear W20607546872021 @default.
- W2060754687 countsByYear W20607546872022 @default.
- W2060754687 crossrefType "journal-article" @default.
- W2060754687 hasAuthorship W2060754687A5005881991 @default.
- W2060754687 hasAuthorship W2060754687A5045754565 @default.
- W2060754687 hasAuthorship W2060754687A5059212307 @default.
- W2060754687 hasBestOaLocation W20607546872 @default.
- W2060754687 hasConcept C10551718 @default.
- W2060754687 hasConcept C106131492 @default.
- W2060754687 hasConcept C124101348 @default.
- W2060754687 hasConcept C153180895 @default.
- W2060754687 hasConcept C154945302 @default.
- W2060754687 hasConcept C25570617 @default.
- W2060754687 hasConcept C31972630 @default.
- W2060754687 hasConcept C34736171 @default.
- W2060754687 hasConcept C3770464 @default.
- W2060754687 hasConcept C41008148 @default.
- W2060754687 hasConcept C47432892 @default.
- W2060754687 hasConcept C50644808 @default.
- W2060754687 hasConceptScore W2060754687C10551718 @default.
- W2060754687 hasConceptScore W2060754687C106131492 @default.
- W2060754687 hasConceptScore W2060754687C124101348 @default.
- W2060754687 hasConceptScore W2060754687C153180895 @default.
- W2060754687 hasConceptScore W2060754687C154945302 @default.
- W2060754687 hasConceptScore W2060754687C25570617 @default.
- W2060754687 hasConceptScore W2060754687C31972630 @default.
- W2060754687 hasConceptScore W2060754687C34736171 @default.
- W2060754687 hasConceptScore W2060754687C3770464 @default.
- W2060754687 hasConceptScore W2060754687C41008148 @default.
- W2060754687 hasConceptScore W2060754687C47432892 @default.