Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060907503> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2060907503 endingPage "1001" @default.
- W2060907503 startingPage "995" @default.
- W2060907503 abstract "Restricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article 1998Interfacial tension effects on slag—metal reactionsPhil. Trans. R. Soc. A.356995–1001http://doi.org/10.1098/rsta.1998.0203SectionRestricted accessInterfacial tension effects on slag—metal reactions Published:15 April 1998https://doi.org/10.1098/rsta.1998.0203AbstractDynamic X–ray imaging of a metal droplet in a slag phase is an elegant way to monitor the rate of the interfacial reactions. In an attempt to follow the kinetics of dephosphorization, the changes in the shape of the sessile drop of molten iron with 0.1 wt% P immersed in a slag kept in MgO crucibles were recorded as a function of time. The slag had an initial composition 40 wt% CaO, 30 wt% SiO2 and 30 wt% Fe2O3. While in a set of runs, solid iron was added to the molten slag, the sequence was reversed in others, where a pellet of the slag was added to the molten iron. In the former case, it was found that after 103s, the drop flattened and the contact angle, θ was well below 90°, indicating a significant increase in the contact area. Beyond 250s, the contact angle showed a gradual increase. In the second series, where the slag was added to the metal, the contact angle remained high throughout the dephosphorization reaction, indicating a rapid mass transfer of phosphorus.Similar application in the field of copper metallurgy, where the transfer of arsenic and antimony from copper metal to molten Na2CO3 was studied, confirm that this technique is very useful in understanding the mechanisms of the slag–metal reactions. Previous ArticleNext Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited by Kamaraj A, Mandal G, Shanmugam S and Roy G (2022) Quantification and analysis of slag carryover during liquid steel tapping from BOF vessel, Canadian Metallurgical Quarterly, 10.1080/00084433.2022.2044688, 61:2, (202-215), Online publication date: 3-Apr-2022. Li Z, Li J, Spooner S and Seetharaman S (2021) Basic Oxygen Steelmaking Slag: Formation, Reaction, and Energy and Material Recovery, steel research international, 10.1002/srin.202100167, 93:3, (2100167), Online publication date: 1-Mar-2022. Biswas J, Drain P, Gu K, Longbottom R, Chapman M, Monaghan B and Coley K (2021) Investigation of the Influence of Slag Basicity on Metal Droplet Dephosphorization, Metallurgical and Materials Transactions B, 10.1007/s11663-021-02350-z, 53:1, (136-151), Online publication date: 1-Feb-2022. Bublik S, Olsen J, Loomba V, Reynolds Q and Einarsrud K (2021) A Review of Ferroalloy Tapping Models, Metallurgical and Materials Transactions B, 10.1007/s11663-021-02134-5, 52:4, (2038-2047), Online publication date: 1-Aug-2021. He X, Wang L and Chou K (2021) Modification of interface chemistry and slag structure by transition element Cr, Ceramics International, 10.1016/j.ceramint.2021.01.105, 47:9, (12476-12482), Online publication date: 1-May-2021. Shamsuddin M (2021) Metallurgical Slag Physical Chemistry of Metallurgical Processes, Second Edition, 10.1007/978-3-030-58069-8_4, (107-148), . Spooner S, Li Z and Sridhar S (2020) Hidden Phenomena During Transient Reaction Trajectories in Liquid Metals Processing, Metallurgical and Materials Transactions B, 10.1007/s11663-020-01880-2, 51:4, (1301-1314), Online publication date: 1-Aug-2020. Wang Z, Wen G, Liu Q, Huang S, Tang P and Yu L (2020) Estimating the thermal conductivity of CaO–Al2O3–SiO2 slags by equilibrium molecular dynamics simulations, Journal of Non-Crystalline Solids, 10.1016/j.jnoncrysol.2019.119851, 531, (119851), Online publication date: 1-Mar-2020. He M, Chen M, Wang N and Li C (2019) Sedimentation Behavior of Liquid Iron Droplets during Smelting Reduction of Converter Slag by Considering the Coalescence of Droplets, ISIJ International, 10.2355/isijinternational.ISIJINT-2018-730, 59:6, (973-980), Online publication date: 15-Jun-2019. Kamaraj A, Mandal G and Roy G (2018) Control of Slag Carryover from the BOF Vessel During Tapping: BOF Cold Model Studies, Metallurgical and Materials Transactions B, 10.1007/s11663-018-1432-3, 50:1, (438-458), Online publication date: 1-Feb-2019. Abdeyazdan H, Monaghan B, Longbottom R, Rhamdhani M, Dogan N and Chapman M (2017) Interfacial Tension in the CaO-Al2O3-SiO2-(MgO) Liquid Slag–Solid Oxide Systems, Metallurgical and Materials Transactions B, 10.1007/s11663-017-0978-9, 48:4, (1970-1980), Online publication date: 1-Aug-2017. Spooner S, Li Z and Sridhar S (2017) Spontaneous Emulsification as a Function of Material Exchange, Scientific Reports, 10.1038/s41598-017-05861-5, 7:1 Spooner S, Assis A, Warnett J, Fruehan R, Williams M and Sridhar S (2016) Investigation into the Cause of Spontaneous Emulsification of a Free Steel Droplet; Validation of the Chemical Exchange Pathway, Metallurgical and Materials Transactions B, 10.1007/s11663-016-0700-3, 47:4, (2123-2132), Online publication date: 1-Aug-2016. Assis A, Warnett J, Spooner S, Fruehan R, Williams M and Sridhar S (2014) Spontaneous Emulsification of a Metal Drop Immersed in Slag Due to Dephosphorization: Surface Area Quantification, Metallurgical and Materials Transactions B, 10.1007/s11663-014-0248-z, 46:2, (568-576), Online publication date: 1-Apr-2015. Tayeb M, Spooner S and Sridhar S (2014) Phosphorus: The Noose of Sustainability and Renewability in Steelmaking, JOM, 10.1007/s11837-014-1093-x, 66:9, (1565-1571), Online publication date: 1-Sep-2014. Mills K, Hayashi M, Wang L and Watanabe T (2014) The Structure and Properties of Silicate Slags Treatise on Process Metallurgy, 10.1016/B978-0-08-096986-2.00008-4, (149-286), . Manning C and Fruehan R (2012) The Rate of the Phosphorous Reaction Between Liquid Iron and Slag, Metallurgical and Materials Transactions B, 10.1007/s11663-012-9757-9, 44:1, (37-44), Online publication date: 1-Feb-2013. Jung E and Min D (2012) Effect of Al2O3 and MgO on Interfacial Tension Between Calcium Silicate-Based Melts and a Solid Steel Substrate, steel research international, 10.1002/srin.201200023, 83:7, (705-711), Online publication date: 1-Jul-2012. Cao W, Muhmood L and Seetharaman S (2011) Sulfur Transfer at Slag/Metal Interface—Impact of Oxygen Potential, Metallurgical and Materials Transactions B, 10.1007/s11663-011-9602-6, 43:2, (363-369), Online publication date: 1-Apr-2012. Muhmood L, Viswanathan N and Seetharaman S (2011) Some Investigations into the Dynamic Mass Transfer at the Slag–Metal Interface Using Sulfur: Concept of Interfacial Velocity, Metallurgical and Materials Transactions B, 10.1007/s11663-011-9482-9, 42:3, (460-470), Online publication date: 1-Jun-2011. Elfsberg J and Matsushita T (2011) X-Ray Observation of Gas Evolution, Flotation, and Emulsification of Molten Carbon Steel Immersed in Mold Flux, Metallurgical and Materials Transactions B, 10.1007/s11663-011-9475-8, 42:2, (265-268), Online publication date: 1-Apr-2011. Elfsberg J and Matsushita T (2011) Measurements and Calculation of Interfacial Tension between Commercial Steels and Mould Flux Slags, steel research international, 10.1002/srin.201000221, 82:4, (404-414), Online publication date: 1-Apr-2011. Matsushita T and Watanabe T (2013) Dynamic in situ X‐ray observation of a molten steel drop shape change in molten slag , Mineral Processing and Extractive Metallurgy, 10.1179/037195510X12791826058172, 120:1, (49-55), Online publication date: 1-Mar-2011. Nita P (2008) Evaluation of some self-sustained capillary effects taking place in slag at the interface during desulphurization process, Materials Science and Engineering: A, 10.1016/j.msea.2007.12.048, 495:1-2, (320-325), Online publication date: 1-Nov-2008. Ricci E, Giuranno D, Novakovic R, Matsushita T, Seetharaman S, Brooks R, Chapman L and Quested P (2007) Density, Surface Tension, and Viscosity of CMSX-4® Superalloy, International Journal of Thermophysics, 10.1007/s10765-007-0257-0, 28:4, (1304-1321), Online publication date: 30-Oct-2007. Rhamdhani M, Brooks G and Coley K (2006) Analysis of interfacial area changes during spontaneous emulsification of metal droplets in slag, Metallurgical and Materials Transactions B, 10.1007/BF02735032, 37:6, (1087-1091), Online publication date: 1-Dec-2006. Rhamdhani M, Coley K and Brooks G (2005) Analysis of the source of dynamic interfacial phenomena during reaction between metal droplets and slag, Metallurgical and Materials Transactions B, 10.1007/s11663-005-0050-z, 36:5, (591-604), Online publication date: 1-Oct-2005. Sridhar S and Sohn H (2005) The kinetics of metallurgical reactions Fundamentals of Metallurgy, 10.1533/9781845690946.1.270, (270-349), . Seetharaman, S, Sichen, D, Eriksson, R and Kapilashrami, E Static and Dynamic Thermophysical Property Measurements at High Temperature, High Temperature Materials and Processes, 10.1515/HTMP.2003.22.5-6.283, 22:5-6, (283-290) Sridhar S (2013) Interfacial Phenomena in Clean Steel Processing Science and Technology of Interfaces, 10.1002/9781118788103.ch34, (399-410) Mills K (2002) The Effect of Interfacial Phenomena on Materials Processing Interfacial Phenomena and the Marangoni Effect, 10.1007/978-3-7091-2550-2_6, (225-283), . Jakobsson A, Sichen D, Seetharaman S and Viswanathan N (2000) Interfacial phenomena in some slag-metal reactions, Metallurgical and Materials Transactions B, 10.1007/s11663-000-0073-4, 31:5, (973-980), Online publication date: 1-Oct-2000. This Issue15 April 1998Volume 356Issue 1739Discussion Meeting Issue ‘Marangoni and interfacial phenomena in materials processing’ organized by E. D. Hondros, M. McLean and K. C. Mills Article InformationDOI:https://doi.org/10.1098/rsta.1998.0203Published by:Royal SocietyPrint ISSN:1364-503XOnline ISSN:1471-2962History: Published online15/04/1998Published in print15/04/1998 License: Citations and impact Keywordsslag–metal reactionssessile dropcontact anglesurface tensionMarangoni flowmetal refining" @default.
- W2060907503 created "2016-06-24" @default.
- W2060907503 creator A5029411713 @default.
- W2060907503 creator A5030444727 @default.
- W2060907503 creator A5051114198 @default.
- W2060907503 creator A5075134612 @default.
- W2060907503 creator A5086054235 @default.
- W2060907503 date "1998-04-15" @default.
- W2060907503 modified "2023-10-03" @default.
- W2060907503 title "Interfacial tension effects on slag—metal reactions" @default.
- W2060907503 cites W1977032079 @default.
- W2060907503 cites W2012080337 @default.
- W2060907503 doi "https://doi.org/10.1098/rsta.1998.0203" @default.
- W2060907503 hasPublicationYear "1998" @default.
- W2060907503 type Work @default.
- W2060907503 sameAs 2060907503 @default.
- W2060907503 citedByCount "34" @default.
- W2060907503 countsByYear W20609075032012 @default.
- W2060907503 countsByYear W20609075032014 @default.
- W2060907503 countsByYear W20609075032016 @default.
- W2060907503 countsByYear W20609075032017 @default.
- W2060907503 countsByYear W20609075032018 @default.
- W2060907503 countsByYear W20609075032019 @default.
- W2060907503 countsByYear W20609075032020 @default.
- W2060907503 countsByYear W20609075032021 @default.
- W2060907503 countsByYear W20609075032022 @default.
- W2060907503 crossrefType "journal-article" @default.
- W2060907503 hasAuthorship W2060907503A5029411713 @default.
- W2060907503 hasAuthorship W2060907503A5030444727 @default.
- W2060907503 hasAuthorship W2060907503A5051114198 @default.
- W2060907503 hasAuthorship W2060907503A5075134612 @default.
- W2060907503 hasAuthorship W2060907503A5086054235 @default.
- W2060907503 hasConcept C112950240 @default.
- W2060907503 hasConcept C121332964 @default.
- W2060907503 hasConcept C159048435 @default.
- W2060907503 hasConcept C159985019 @default.
- W2060907503 hasConcept C186068551 @default.
- W2060907503 hasConcept C191897082 @default.
- W2060907503 hasConcept C192562407 @default.
- W2060907503 hasConcept C544153396 @default.
- W2060907503 hasConcept C8892853 @default.
- W2060907503 hasConcept C97355855 @default.
- W2060907503 hasConceptScore W2060907503C112950240 @default.
- W2060907503 hasConceptScore W2060907503C121332964 @default.
- W2060907503 hasConceptScore W2060907503C159048435 @default.
- W2060907503 hasConceptScore W2060907503C159985019 @default.
- W2060907503 hasConceptScore W2060907503C186068551 @default.
- W2060907503 hasConceptScore W2060907503C191897082 @default.
- W2060907503 hasConceptScore W2060907503C192562407 @default.
- W2060907503 hasConceptScore W2060907503C544153396 @default.
- W2060907503 hasConceptScore W2060907503C8892853 @default.
- W2060907503 hasConceptScore W2060907503C97355855 @default.
- W2060907503 hasIssue "1739" @default.
- W2060907503 hasLocation W20609075031 @default.
- W2060907503 hasOpenAccess W2060907503 @default.
- W2060907503 hasPrimaryLocation W20609075031 @default.
- W2060907503 hasRelatedWork W2014315543 @default.
- W2060907503 hasRelatedWork W2051270029 @default.
- W2060907503 hasRelatedWork W2082293200 @default.
- W2060907503 hasRelatedWork W2137307547 @default.
- W2060907503 hasRelatedWork W2380293314 @default.
- W2060907503 hasRelatedWork W2943188944 @default.
- W2060907503 hasRelatedWork W3008690834 @default.
- W2060907503 hasRelatedWork W3082440218 @default.
- W2060907503 hasRelatedWork W4242480814 @default.
- W2060907503 hasRelatedWork W4285802202 @default.
- W2060907503 hasVolume "356" @default.
- W2060907503 isParatext "false" @default.
- W2060907503 isRetracted "false" @default.
- W2060907503 magId "2060907503" @default.
- W2060907503 workType "article" @default.