Matches in SemOpenAlex for { <https://semopenalex.org/work/W2060986478> ?p ?o ?g. }
- W2060986478 endingPage "404" @default.
- W2060986478 startingPage "391" @default.
- W2060986478 abstract "In this paper, we adapt a mixture model originally developed for regression models with independent data for the more general case of correlated outcome data, which includes longitudinal data as a special case. The estimation is performed by a generalisation of the EM algorithm which we call the Expectation-Solution (ES) algorithm. In this ES algorithm the M-step of the EM algorithm is replaced by a step requiring the solution of a series of generalised estimating equations. The ES algorithm, a general algorithm for solving generalised estimating equations with incomplete data, is then applied to the present problem of mixtures of marginal models. In addition to allowing for correlation inherent in correlated outcome data, the systematic component of this mixture of marginal models is more flexible than the conventional linear function. The methodology is applied in the contexts of normal and Poisson response data. Some theory regarding the ES algorithm is presented." @default.
- W2060986478 created "2016-06-24" @default.
- W2060986478 creator A5066011588 @default.
- W2060986478 date "2000-06-01" @default.
- W2060986478 modified "2023-10-18" @default.
- W2060986478 title "Mixtures of marginal models" @default.
- W2060986478 cites W1572134371 @default.
- W2060986478 cites W1963925817 @default.
- W2060986478 cites W1969672258 @default.
- W2060986478 cites W1976566530 @default.
- W2060986478 cites W1978136073 @default.
- W2060986478 cites W2014581807 @default.
- W2060986478 cites W2024225232 @default.
- W2060986478 cites W2025653905 @default.
- W2060986478 cites W2027628336 @default.
- W2060986478 cites W2034465608 @default.
- W2060986478 cites W2053068905 @default.
- W2060986478 cites W2053633338 @default.
- W2060986478 cites W2062464420 @default.
- W2060986478 cites W2087002235 @default.
- W2060986478 cites W2089887873 @default.
- W2060986478 cites W2145816995 @default.
- W2060986478 cites W2147503863 @default.
- W2060986478 cites W2149860264 @default.
- W2060986478 cites W2150287398 @default.
- W2060986478 cites W2150884987 @default.
- W2060986478 cites W2152977846 @default.
- W2060986478 cites W2163696743 @default.
- W2060986478 cites W2166698530 @default.
- W2060986478 cites W2171042621 @default.
- W2060986478 cites W2797458901 @default.
- W2060986478 cites W2797508167 @default.
- W2060986478 cites W2904488369 @default.
- W2060986478 doi "https://doi.org/10.1093/biomet/87.2.391" @default.
- W2060986478 hasPublicationYear "2000" @default.
- W2060986478 type Work @default.
- W2060986478 sameAs 2060986478 @default.
- W2060986478 citedByCount "65" @default.
- W2060986478 countsByYear W20609864782012 @default.
- W2060986478 countsByYear W20609864782013 @default.
- W2060986478 countsByYear W20609864782014 @default.
- W2060986478 countsByYear W20609864782015 @default.
- W2060986478 countsByYear W20609864782016 @default.
- W2060986478 countsByYear W20609864782017 @default.
- W2060986478 countsByYear W20609864782018 @default.
- W2060986478 countsByYear W20609864782019 @default.
- W2060986478 countsByYear W20609864782020 @default.
- W2060986478 countsByYear W20609864782021 @default.
- W2060986478 countsByYear W20609864782022 @default.
- W2060986478 countsByYear W20609864782023 @default.
- W2060986478 crossrefType "journal-article" @default.
- W2060986478 hasAuthorship W2060986478A5066011588 @default.
- W2060986478 hasConcept C100906024 @default.
- W2060986478 hasConcept C105795698 @default.
- W2060986478 hasConcept C11413529 @default.
- W2060986478 hasConcept C121332964 @default.
- W2060986478 hasConcept C126255220 @default.
- W2060986478 hasConcept C143724316 @default.
- W2060986478 hasConcept C144237770 @default.
- W2060986478 hasConcept C148220186 @default.
- W2060986478 hasConcept C151730666 @default.
- W2060986478 hasConcept C168167062 @default.
- W2060986478 hasConcept C182081679 @default.
- W2060986478 hasConcept C28826006 @default.
- W2060986478 hasConcept C33923547 @default.
- W2060986478 hasConcept C41587187 @default.
- W2060986478 hasConcept C49781872 @default.
- W2060986478 hasConcept C86803240 @default.
- W2060986478 hasConcept C97355855 @default.
- W2060986478 hasConceptScore W2060986478C100906024 @default.
- W2060986478 hasConceptScore W2060986478C105795698 @default.
- W2060986478 hasConceptScore W2060986478C11413529 @default.
- W2060986478 hasConceptScore W2060986478C121332964 @default.
- W2060986478 hasConceptScore W2060986478C126255220 @default.
- W2060986478 hasConceptScore W2060986478C143724316 @default.
- W2060986478 hasConceptScore W2060986478C144237770 @default.
- W2060986478 hasConceptScore W2060986478C148220186 @default.
- W2060986478 hasConceptScore W2060986478C151730666 @default.
- W2060986478 hasConceptScore W2060986478C168167062 @default.
- W2060986478 hasConceptScore W2060986478C182081679 @default.
- W2060986478 hasConceptScore W2060986478C28826006 @default.
- W2060986478 hasConceptScore W2060986478C33923547 @default.
- W2060986478 hasConceptScore W2060986478C41587187 @default.
- W2060986478 hasConceptScore W2060986478C49781872 @default.
- W2060986478 hasConceptScore W2060986478C86803240 @default.
- W2060986478 hasConceptScore W2060986478C97355855 @default.
- W2060986478 hasIssue "2" @default.
- W2060986478 hasLocation W20609864781 @default.
- W2060986478 hasOpenAccess W2060986478 @default.
- W2060986478 hasPrimaryLocation W20609864781 @default.
- W2060986478 hasRelatedWork W1968460375 @default.
- W2060986478 hasRelatedWork W1992992304 @default.
- W2060986478 hasRelatedWork W2067697311 @default.
- W2060986478 hasRelatedWork W2116405300 @default.
- W2060986478 hasRelatedWork W2327469042 @default.
- W2060986478 hasRelatedWork W2351859806 @default.
- W2060986478 hasRelatedWork W4234627034 @default.
- W2060986478 hasRelatedWork W4280566189 @default.