Matches in SemOpenAlex for { <https://semopenalex.org/work/W2061006910> ?p ?o ?g. }
- W2061006910 endingPage "244" @default.
- W2061006910 startingPage "229" @default.
- W2061006910 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 502:229-244 (2014) - DOI: https://doi.org/10.3354/meps10682 Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish Monique G. G. Grol1, Andrew L. Rypel2, Ivan Nagelkerken1,3,* 1Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Animal Ecology and Ecophysiology, PO Box 9010, 6500 GL Nijmegen, The Netherlands 2Department of Fish and Wildlife Conservation, Virginia Tech, 100 Cheatham Hall, Blacksburg, Virginia 24061, USA 3Southern Seas Ecology Laboratories, School of Earth and Environmental Sciences, DX 650 418, The University of Adelaide, Adelaide, South Australia 5005, Australia *Corresponding author: ivan.nagelkerken@adelaide.edu.au ABSTRACT: Various species of aquatic animals have complex life cycles and utilize different habitats during consecutive phases of their life cycles. For example, many marine fish species occupy different habitat types during juvenile and adult life stages. Juveniles of some species recruit to inshore nursery habitats such as mangroves and seagrass beds, whereas large adults tend to dominate coral reefs. The mechanisms underlying apparent cross-habitat distribution patterns by life stage remain uncertain for many species. Here, we investigated potential mechanisms that produce a 5-phase, and possibly even a 6-phase life cycle pattern in a common Caribbean coral reef fish species Haemulon flavolineatum (French grunt) across multiple coastal habitats. At each discrete life stage, individuals were faced with important and stage-specific ecological trade-offs that could significantly augment fitness. Pelagic larvae settled on rubble habitats near bay entrances where they reached an optimum between predation risk (survival) and food abundance (growth). Individuals subsequently shifted to seagrass beds, likely as a result of increased food resources, followed by a shift to mangroves as predation refugia. Before the uni-directional movement between bays and coral reefs, some fishes shifted from mangroves to boulder/notch habitats. Likely, this habitat serves as an intermediate stop before their final shift to the coral reef, where they reach maturity and reproduce. This study reveals ecological linkages and flows among habitat types that are of direct conservation importance to these ecosystems. Furthermore, the identification of mechanisms that give rise to cross-habitat distribution patterns of marine fishes in general might lead to enhanced conservation management solutions to declines in fisheries at larger scales. KEY WORDS: Ontogenetic habitat shifts · Life cycle · Nursery · Food abundance · Condition · Maturation · Trade-offs Full text in pdf format Supplementary material PreviousNextCite this article as: Grol MGG, Rypel AL, Nagelkerken I (2014) Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Mar Ecol Prog Ser 502:229-244. https://doi.org/10.3354/meps10682 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 502. Online publication date: April 15, 2014 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2014 Inter-Research." @default.
- W2061006910 created "2016-06-24" @default.
- W2061006910 creator A5022376294 @default.
- W2061006910 creator A5037665177 @default.
- W2061006910 creator A5091731218 @default.
- W2061006910 date "2014-04-15" @default.
- W2061006910 modified "2023-09-26" @default.
- W2061006910 title "Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish" @default.
- W2061006910 cites W1501246969 @default.
- W2061006910 cites W179536040 @default.
- W2061006910 cites W1966265561 @default.
- W2061006910 cites W1980401304 @default.
- W2061006910 cites W1982191767 @default.
- W2061006910 cites W1985424127 @default.
- W2061006910 cites W1986088328 @default.
- W2061006910 cites W1988430672 @default.
- W2061006910 cites W1989677780 @default.
- W2061006910 cites W1989974377 @default.
- W2061006910 cites W1990989304 @default.
- W2061006910 cites W1991641871 @default.
- W2061006910 cites W2000157294 @default.
- W2061006910 cites W2001196282 @default.
- W2061006910 cites W2001234224 @default.
- W2061006910 cites W2019421652 @default.
- W2061006910 cites W2019433975 @default.
- W2061006910 cites W2022492268 @default.
- W2061006910 cites W2030795419 @default.
- W2061006910 cites W2034033386 @default.
- W2061006910 cites W2035472046 @default.
- W2061006910 cites W2055551780 @default.
- W2061006910 cites W2060693996 @default.
- W2061006910 cites W2061413738 @default.
- W2061006910 cites W2061745923 @default.
- W2061006910 cites W2061795367 @default.
- W2061006910 cites W2067228012 @default.
- W2061006910 cites W2067804762 @default.
- W2061006910 cites W2068640255 @default.
- W2061006910 cites W2077766667 @default.
- W2061006910 cites W2078091746 @default.
- W2061006910 cites W2079506009 @default.
- W2061006910 cites W2080449924 @default.
- W2061006910 cites W2082135647 @default.
- W2061006910 cites W2084245645 @default.
- W2061006910 cites W2089240183 @default.
- W2061006910 cites W2097607146 @default.
- W2061006910 cites W2103722255 @default.
- W2061006910 cites W2104141853 @default.
- W2061006910 cites W2105608054 @default.
- W2061006910 cites W2114115616 @default.
- W2061006910 cites W2117217884 @default.
- W2061006910 cites W2118193777 @default.
- W2061006910 cites W2121053502 @default.
- W2061006910 cites W2124985136 @default.
- W2061006910 cites W2133264054 @default.
- W2061006910 cites W2133741276 @default.
- W2061006910 cites W2137336410 @default.
- W2061006910 cites W2143555448 @default.
- W2061006910 cites W2143675983 @default.
- W2061006910 cites W2146069834 @default.
- W2061006910 cites W2150620843 @default.
- W2061006910 cites W2153187089 @default.
- W2061006910 cites W2160076004 @default.
- W2061006910 cites W2162922084 @default.
- W2061006910 cites W2165111556 @default.
- W2061006910 cites W2179831809 @default.
- W2061006910 cites W2267361358 @default.
- W2061006910 cites W2488561178 @default.
- W2061006910 cites W2895921492 @default.
- W2061006910 cites W302372166 @default.
- W2061006910 cites W34858465 @default.
- W2061006910 cites W4246171447 @default.
- W2061006910 cites W4361867234 @default.
- W2061006910 doi "https://doi.org/10.3354/meps10682" @default.
- W2061006910 hasPublicationYear "2014" @default.
- W2061006910 type Work @default.
- W2061006910 sameAs 2061006910 @default.
- W2061006910 citedByCount "52" @default.
- W2061006910 countsByYear W20610069102014 @default.
- W2061006910 countsByYear W20610069102015 @default.
- W2061006910 countsByYear W20610069102016 @default.
- W2061006910 countsByYear W20610069102017 @default.
- W2061006910 countsByYear W20610069102018 @default.
- W2061006910 countsByYear W20610069102019 @default.
- W2061006910 countsByYear W20610069102020 @default.
- W2061006910 countsByYear W20610069102021 @default.
- W2061006910 countsByYear W20610069102022 @default.
- W2061006910 countsByYear W20610069102023 @default.
- W2061006910 crossrefType "journal-article" @default.
- W2061006910 hasAuthorship W2061006910A5022376294 @default.
- W2061006910 hasAuthorship W2061006910A5037665177 @default.
- W2061006910 hasAuthorship W2061006910A5091731218 @default.
- W2061006910 hasBestOaLocation W20610069101 @default.
- W2061006910 hasConcept C115961737 @default.
- W2061006910 hasConcept C144492951 @default.
- W2061006910 hasConcept C185933670 @default.
- W2061006910 hasConcept C188382862 @default.
- W2061006910 hasConcept C18903297 @default.
- W2061006910 hasConcept C205649164 @default.