Matches in SemOpenAlex for { <https://semopenalex.org/work/W2061011797> ?p ?o ?g. }
- W2061011797 endingPage "119" @default.
- W2061011797 startingPage "91" @default.
- W2061011797 abstract "We investigate the effects of semantically-based crossover operators in genetic programming, applied to real-valued symbolic regression problems. We propose two new relations derived from the semantic distance between subtrees, known as semantic equivalence and semantic similarity. These relations are used to guide variants of the crossover operator, resulting in two new crossover operators—semantics aware crossover (SAC) and semantic similarity-based crossover (SSC). SAC, was introduced and previously studied, is added here for the purpose of comparison and analysis. SSC extends SAC by more closely controlling the semantic distance between subtrees to which crossover may be applied. The new operators were tested on some real-valued symbolic regression problems and compared with standard crossover (SC), context aware crossover (CAC), Soft Brood Selection (SBS), and No Same Mate (NSM) selection. The experimental results show on the problems examined that, with computational effort measured by the number of function node evaluations, only SSC and SBS were significantly better than SC, and SSC was often better than SBS. Further experiments were also conducted to analyse the perfomance sensitivity to the parameter settings for SSC. This analysis leads to a conclusion that SSC is more constructive and has higher locality than SAC, NSM and SC; we believe these are the main reasons for the improved performance of SSC." @default.
- W2061011797 created "2016-06-24" @default.
- W2061011797 creator A5001619292 @default.
- W2061011797 creator A5021669497 @default.
- W2061011797 creator A5072769304 @default.
- W2061011797 creator A5080219134 @default.
- W2061011797 creator A5088822298 @default.
- W2061011797 date "2010-07-30" @default.
- W2061011797 modified "2023-10-14" @default.
- W2061011797 title "Semantically-based crossover in genetic programming: application to real-valued symbolic regression" @default.
- W2061011797 cites W1496078445 @default.
- W2061011797 cites W1501730763 @default.
- W2061011797 cites W1519072852 @default.
- W2061011797 cites W1523998349 @default.
- W2061011797 cites W1526014057 @default.
- W2061011797 cites W1527480195 @default.
- W2061011797 cites W1541054015 @default.
- W2061011797 cites W1552798917 @default.
- W2061011797 cites W1571687384 @default.
- W2061011797 cites W1579983817 @default.
- W2061011797 cites W1581584868 @default.
- W2061011797 cites W1585803290 @default.
- W2061011797 cites W1586728173 @default.
- W2061011797 cites W1589720045 @default.
- W2061011797 cites W1829715381 @default.
- W2061011797 cites W1964071625 @default.
- W2061011797 cites W2003240077 @default.
- W2061011797 cites W2010615382 @default.
- W2061011797 cites W2011318261 @default.
- W2061011797 cites W2024144496 @default.
- W2061011797 cites W2056769911 @default.
- W2061011797 cites W2080267935 @default.
- W2061011797 cites W2105874283 @default.
- W2061011797 cites W2106208871 @default.
- W2061011797 cites W2127503687 @default.
- W2061011797 cites W2127525746 @default.
- W2061011797 cites W2132304387 @default.
- W2061011797 cites W2134556280 @default.
- W2061011797 cites W2144172186 @default.
- W2061011797 cites W2152961953 @default.
- W2061011797 cites W2157222280 @default.
- W2061011797 cites W2164305954 @default.
- W2061011797 cites W2166963499 @default.
- W2061011797 cites W2169975171 @default.
- W2061011797 cites W45829939 @default.
- W2061011797 doi "https://doi.org/10.1007/s10710-010-9121-2" @default.
- W2061011797 hasPublicationYear "2010" @default.
- W2061011797 type Work @default.
- W2061011797 sameAs 2061011797 @default.
- W2061011797 citedByCount "222" @default.
- W2061011797 countsByYear W20610117972012 @default.
- W2061011797 countsByYear W20610117972013 @default.
- W2061011797 countsByYear W20610117972014 @default.
- W2061011797 countsByYear W20610117972015 @default.
- W2061011797 countsByYear W20610117972016 @default.
- W2061011797 countsByYear W20610117972017 @default.
- W2061011797 countsByYear W20610117972018 @default.
- W2061011797 countsByYear W20610117972019 @default.
- W2061011797 countsByYear W20610117972020 @default.
- W2061011797 countsByYear W20610117972021 @default.
- W2061011797 countsByYear W20610117972022 @default.
- W2061011797 countsByYear W20610117972023 @default.
- W2061011797 crossrefType "journal-article" @default.
- W2061011797 hasAuthorship W2061011797A5001619292 @default.
- W2061011797 hasAuthorship W2061011797A5021669497 @default.
- W2061011797 hasAuthorship W2061011797A5072769304 @default.
- W2061011797 hasAuthorship W2061011797A5080219134 @default.
- W2061011797 hasAuthorship W2061011797A5088822298 @default.
- W2061011797 hasBestOaLocation W20610117972 @default.
- W2061011797 hasConcept C104317684 @default.
- W2061011797 hasConcept C110332635 @default.
- W2061011797 hasConcept C11413529 @default.
- W2061011797 hasConcept C122507166 @default.
- W2061011797 hasConcept C130318100 @default.
- W2061011797 hasConcept C151730666 @default.
- W2061011797 hasConcept C154945302 @default.
- W2061011797 hasConcept C158448853 @default.
- W2061011797 hasConcept C17020691 @default.
- W2061011797 hasConcept C184337299 @default.
- W2061011797 hasConcept C185592680 @default.
- W2061011797 hasConcept C199360897 @default.
- W2061011797 hasConcept C2776400721 @default.
- W2061011797 hasConcept C2778701210 @default.
- W2061011797 hasConcept C2779343474 @default.
- W2061011797 hasConcept C41008148 @default.
- W2061011797 hasConcept C55493867 @default.
- W2061011797 hasConcept C80444323 @default.
- W2061011797 hasConcept C86339819 @default.
- W2061011797 hasConcept C86803240 @default.
- W2061011797 hasConcept C98045186 @default.
- W2061011797 hasConceptScore W2061011797C104317684 @default.
- W2061011797 hasConceptScore W2061011797C110332635 @default.
- W2061011797 hasConceptScore W2061011797C11413529 @default.
- W2061011797 hasConceptScore W2061011797C122507166 @default.
- W2061011797 hasConceptScore W2061011797C130318100 @default.
- W2061011797 hasConceptScore W2061011797C151730666 @default.
- W2061011797 hasConceptScore W2061011797C154945302 @default.
- W2061011797 hasConceptScore W2061011797C158448853 @default.