Matches in SemOpenAlex for { <https://semopenalex.org/work/W2061146360> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2061146360 endingPage "405" @default.
- W2061146360 startingPage "405" @default.
- W2061146360 abstract "Classification of human complex diseases such as cancers using high-throughput mass spectrometry data generated by modern proteomic technology has quickly become an attractive topic of research in bioinformatics. However, successful applications of such proteomic strategies for early disease detection are greatly dependent on the effectiveness of computational models for data analysis. Ultimately, the extraction of appropriate features that can represent the identities of different classes plays the frontal critical factor for any difficult classification problems. In addition, another major problem associated with pattern recognition is how to effectively handle a large feature space. This paper addresses these two frontal issues for Mass Spectrometry (MS) classification. We apply two computational prediction models to extract features of MS data and then use vector quantisation to reduce the feature storage. We also introduce the technique of information fusion for classification enhancement. The proposed methodology was tested using an MS-based ovarian cancer dataset and the results were found to be superior to a support vector machine approach using a different feature for the same data." @default.
- W2061146360 created "2016-06-24" @default.
- W2061146360 creator A5009439842 @default.
- W2061146360 date "2008-01-01" @default.
- W2061146360 modified "2023-10-14" @default.
- W2061146360 title "Computational prediction models for cancer classification using mass spectrometry data" @default.
- W2061146360 cites W1544476032 @default.
- W2061146360 cites W1560013842 @default.
- W2061146360 cites W1819658147 @default.
- W2061146360 cites W1966264494 @default.
- W2061146360 cites W1993767621 @default.
- W2061146360 cites W2007967747 @default.
- W2061146360 cites W2015186727 @default.
- W2061146360 cites W2022054869 @default.
- W2061146360 cites W2023096047 @default.
- W2061146360 cites W2062867320 @default.
- W2061146360 cites W2083189242 @default.
- W2061146360 cites W2098434653 @default.
- W2061146360 cites W2101786737 @default.
- W2061146360 cites W2106246854 @default.
- W2061146360 cites W2114117605 @default.
- W2061146360 cites W2126897927 @default.
- W2061146360 cites W2127995393 @default.
- W2061146360 cites W2128589733 @default.
- W2061146360 cites W2129028825 @default.
- W2061146360 cites W2134383396 @default.
- W2061146360 cites W2134389439 @default.
- W2061146360 cites W2140496491 @default.
- W2061146360 cites W2145646861 @default.
- W2061146360 cites W2150424684 @default.
- W2061146360 cites W2152579092 @default.
- W2061146360 cites W2158576281 @default.
- W2061146360 cites W2159105055 @default.
- W2061146360 cites W2159855065 @default.
- W2061146360 cites W2171593624 @default.
- W2061146360 cites W2171646358 @default.
- W2061146360 cites W2241314529 @default.
- W2061146360 cites W2803327664 @default.
- W2061146360 cites W2913399920 @default.
- W2061146360 cites W295508768 @default.
- W2061146360 cites W24261100 @default.
- W2061146360 doi "https://doi.org/10.1504/ijdmb.2008.022160" @default.
- W2061146360 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19216343" @default.
- W2061146360 hasPublicationYear "2008" @default.
- W2061146360 type Work @default.
- W2061146360 sameAs 2061146360 @default.
- W2061146360 citedByCount "14" @default.
- W2061146360 countsByYear W20611463602012 @default.
- W2061146360 countsByYear W20611463602013 @default.
- W2061146360 countsByYear W20611463602014 @default.
- W2061146360 countsByYear W20611463602015 @default.
- W2061146360 countsByYear W20611463602016 @default.
- W2061146360 crossrefType "journal-article" @default.
- W2061146360 hasAuthorship W2061146360A5009439842 @default.
- W2061146360 hasConcept C119857082 @default.
- W2061146360 hasConcept C12267149 @default.
- W2061146360 hasConcept C124101348 @default.
- W2061146360 hasConcept C138885662 @default.
- W2061146360 hasConcept C153180895 @default.
- W2061146360 hasConcept C154945302 @default.
- W2061146360 hasConcept C2776401178 @default.
- W2061146360 hasConcept C41008148 @default.
- W2061146360 hasConcept C41895202 @default.
- W2061146360 hasConcept C52622490 @default.
- W2061146360 hasConcept C83665646 @default.
- W2061146360 hasConceptScore W2061146360C119857082 @default.
- W2061146360 hasConceptScore W2061146360C12267149 @default.
- W2061146360 hasConceptScore W2061146360C124101348 @default.
- W2061146360 hasConceptScore W2061146360C138885662 @default.
- W2061146360 hasConceptScore W2061146360C153180895 @default.
- W2061146360 hasConceptScore W2061146360C154945302 @default.
- W2061146360 hasConceptScore W2061146360C2776401178 @default.
- W2061146360 hasConceptScore W2061146360C41008148 @default.
- W2061146360 hasConceptScore W2061146360C41895202 @default.
- W2061146360 hasConceptScore W2061146360C52622490 @default.
- W2061146360 hasConceptScore W2061146360C83665646 @default.
- W2061146360 hasIssue "4" @default.
- W2061146360 hasLocation W20611463601 @default.
- W2061146360 hasLocation W20611463602 @default.
- W2061146360 hasOpenAccess W2061146360 @default.
- W2061146360 hasPrimaryLocation W20611463601 @default.
- W2061146360 hasRelatedWork W1594873333 @default.
- W2061146360 hasRelatedWork W1977222486 @default.
- W2061146360 hasRelatedWork W2049538278 @default.
- W2061146360 hasRelatedWork W2336974148 @default.
- W2061146360 hasRelatedWork W2378448154 @default.
- W2061146360 hasRelatedWork W2546942002 @default.
- W2061146360 hasRelatedWork W2772780115 @default.
- W2061146360 hasRelatedWork W3096162641 @default.
- W2061146360 hasRelatedWork W2187500075 @default.
- W2061146360 hasRelatedWork W2345184372 @default.
- W2061146360 hasVolume "2" @default.
- W2061146360 isParatext "false" @default.
- W2061146360 isRetracted "false" @default.
- W2061146360 magId "2061146360" @default.
- W2061146360 workType "article" @default.