Matches in SemOpenAlex for { <https://semopenalex.org/work/W2061170466> ?p ?o ?g. }
- W2061170466 endingPage "874" @default.
- W2061170466 startingPage "813" @default.
- W2061170466 abstract "A recurring theme in attempts to break the curse of dimensionality in the numerical approximation of solutions to high-dimensional partial differential equations (PDEs) is to employ some form of sparse tensor approximation. Unfortunately, there are only a few results that quantify the possible advantages of such an approach. This paper introduces a class $$Sigma _n$$ of functions, which can be written as a sum of rank-one tensors using a total of at most $$n$$ parameters, and then uses this notion of sparsity to prove a regularity theorem for certain high-dimensional elliptic PDEs. It is shown, among other results, that whenever the right-hand side $$f$$ of the elliptic PDE can be approximated with a certain rate $$mathcal {O}(n^{-r})$$ in the norm of $${mathrm H}^{-1}$$ by elements of $$Sigma _n$$ , then the solution $$u$$ can be approximated in $${mathrm H}^1$$ from $$Sigma _n$$ to accuracy $$mathcal {O}(n^{-r'})$$ for any $$r'in (0,r)$$ . Since these results require knowledge of the eigenbasis of the elliptic operator considered, we propose a second “basis-free” model of tensor-sparsity and prove a regularity theorem for this second sparsity model as well. We then proceed to address the important question of the extent to which such regularity theorems translate into results on computational complexity. It is shown how this second model can be used to derive computational algorithms with performance that breaks the curse of dimensionality on certain model high-dimensional elliptic PDEs with tensor-sparse data." @default.
- W2061170466 created "2016-06-24" @default.
- W2061170466 creator A5044715882 @default.
- W2061170466 creator A5064002486 @default.
- W2061170466 creator A5066247071 @default.
- W2061170466 creator A5089461140 @default.
- W2061170466 date "2015-04-30" @default.
- W2061170466 modified "2023-10-14" @default.
- W2061170466 title "Tensor-Sparsity of Solutions to High-Dimensional Elliptic Partial Differential Equations" @default.
- W2061170466 cites W1503425191 @default.
- W2061170466 cites W1535160936 @default.
- W2061170466 cites W1820164671 @default.
- W2061170466 cites W1970971720 @default.
- W2061170466 cites W1996440503 @default.
- W2061170466 cites W2009253094 @default.
- W2061170466 cites W2028247581 @default.
- W2061170466 cites W2035766380 @default.
- W2061170466 cites W2038072692 @default.
- W2061170466 cites W2038198231 @default.
- W2061170466 cites W2049222546 @default.
- W2061170466 cites W2053693274 @default.
- W2061170466 cites W2059875127 @default.
- W2061170466 cites W2062064231 @default.
- W2061170466 cites W2073656615 @default.
- W2061170466 cites W2075646404 @default.
- W2061170466 cites W2076603483 @default.
- W2061170466 cites W2088025933 @default.
- W2061170466 cites W2132267493 @default.
- W2061170466 cites W2135512293 @default.
- W2061170466 cites W3021293439 @default.
- W2061170466 cites W3098901429 @default.
- W2061170466 cites W3104098947 @default.
- W2061170466 cites W4231428347 @default.
- W2061170466 cites W4234347848 @default.
- W2061170466 cites W4292361795 @default.
- W2061170466 cites W4293185733 @default.
- W2061170466 doi "https://doi.org/10.1007/s10208-015-9265-9" @default.
- W2061170466 hasPublicationYear "2015" @default.
- W2061170466 type Work @default.
- W2061170466 sameAs 2061170466 @default.
- W2061170466 citedByCount "33" @default.
- W2061170466 countsByYear W20611704662015 @default.
- W2061170466 countsByYear W20611704662016 @default.
- W2061170466 countsByYear W20611704662017 @default.
- W2061170466 countsByYear W20611704662018 @default.
- W2061170466 countsByYear W20611704662019 @default.
- W2061170466 countsByYear W20611704662020 @default.
- W2061170466 countsByYear W20611704662021 @default.
- W2061170466 countsByYear W20611704662022 @default.
- W2061170466 countsByYear W20611704662023 @default.
- W2061170466 crossrefType "journal-article" @default.
- W2061170466 hasAuthorship W2061170466A5044715882 @default.
- W2061170466 hasAuthorship W2061170466A5064002486 @default.
- W2061170466 hasAuthorship W2061170466A5066247071 @default.
- W2061170466 hasAuthorship W2061170466A5089461140 @default.
- W2061170466 hasBestOaLocation W20611704662 @default.
- W2061170466 hasConcept C105795698 @default.
- W2061170466 hasConcept C111030470 @default.
- W2061170466 hasConcept C118615104 @default.
- W2061170466 hasConcept C134306372 @default.
- W2061170466 hasConcept C155281189 @default.
- W2061170466 hasConcept C17744445 @default.
- W2061170466 hasConcept C191795146 @default.
- W2061170466 hasConcept C199539241 @default.
- W2061170466 hasConcept C202444582 @default.
- W2061170466 hasConcept C28826006 @default.
- W2061170466 hasConcept C33923547 @default.
- W2061170466 hasConcept C51255310 @default.
- W2061170466 hasConcept C54067925 @default.
- W2061170466 hasConcept C70610323 @default.
- W2061170466 hasConcept C93779851 @default.
- W2061170466 hasConceptScore W2061170466C105795698 @default.
- W2061170466 hasConceptScore W2061170466C111030470 @default.
- W2061170466 hasConceptScore W2061170466C118615104 @default.
- W2061170466 hasConceptScore W2061170466C134306372 @default.
- W2061170466 hasConceptScore W2061170466C155281189 @default.
- W2061170466 hasConceptScore W2061170466C17744445 @default.
- W2061170466 hasConceptScore W2061170466C191795146 @default.
- W2061170466 hasConceptScore W2061170466C199539241 @default.
- W2061170466 hasConceptScore W2061170466C202444582 @default.
- W2061170466 hasConceptScore W2061170466C28826006 @default.
- W2061170466 hasConceptScore W2061170466C33923547 @default.
- W2061170466 hasConceptScore W2061170466C51255310 @default.
- W2061170466 hasConceptScore W2061170466C54067925 @default.
- W2061170466 hasConceptScore W2061170466C70610323 @default.
- W2061170466 hasConceptScore W2061170466C93779851 @default.
- W2061170466 hasIssue "4" @default.
- W2061170466 hasLocation W20611704661 @default.
- W2061170466 hasLocation W20611704662 @default.
- W2061170466 hasLocation W20611704663 @default.
- W2061170466 hasLocation W20611704664 @default.
- W2061170466 hasOpenAccess W2061170466 @default.
- W2061170466 hasPrimaryLocation W20611704661 @default.
- W2061170466 hasRelatedWork W1912064545 @default.
- W2061170466 hasRelatedWork W2061170466 @default.
- W2061170466 hasRelatedWork W2063425968 @default.
- W2061170466 hasRelatedWork W2123186262 @default.
- W2061170466 hasRelatedWork W2146552914 @default.