Matches in SemOpenAlex for { <https://semopenalex.org/work/W206117183> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W206117183 abstract "In the field of geospatial data discovery, two goals must be met to bridge the gap between data providers and data consumers: (1) machine agent or a search engine must be able to identify the distributed data sources owned by data providers on the Internet, (2) the machine agent must also incorporate human intelligence to find the most suitable data sources required by data consumers. To achieve the above goals, search algorithms are applied in the data discovery process so that a machine can implement automatic retrieval of needed information. However, most of the search algorithms focus on discovering general webpages rather than considering the characteristics of data sources in a specific domain, such as hydrology. This leads to the low performance of a search engine when handling domain-specific queries.This dissertation presents a number of techniques that address the fundamental questions in the problem of geospatial data discovery: how to automatically discover and collect relevant geospatial data dispersed widely on the Web? Once this information is found, how can this information be encoded from human-readable format to machine understandable format? And how to make the machine incorporate human intelligence to answer various search questions? This dissertation starts by developing an active crawler for automatic geospatial data discovery. Traditional data discovery methods include using general search engines, such as Google or accessing geospatial Web catalogues, such as Geospatial One Stop (GOS). However, Google aims to answer generic queries by treating all the keywords evenly without considering the special characteristics of geospatial data. If solely relying on Google, the needed services will be hidden in the long list of the search results. The drawback of using geospatial Web catalogues is that it assumes all data providers would register their services into the catalogues. However, this is apparently not true. In addition, the lack of timely updates generates considerable dead links in the catalogue. This dissertation proposes an accumulative term frequency based conditional probability model and develops a corresponding crawler to solve the above problem and discover geospatial data more efficiently. This dissertation then examines the problem of building a domain Knowledge Base (KB) for modeling data and knowledge from multiple sources. Current approaches reported in the literature use a controlled vocabulary, which does not encode enough logical relationships between spatial objects to enable semantic reasoning. To overcome this drawback, this dissertation proposes a new conceptual model to abstract, map, and model the geospatial knowledge for the hydrology domain. A Web-based tool is designed and developed for collaboratively populating the KB by users with different backgrounds according to the proposed conceptual model. In addition, a semantic reasoning procedure is implemented for locating all the suitable data candidates so as to enhance the performance of the geospatial search engine. To provide the data consumers with the best resource, the search engine should be capable of automatically judging the similarities among spatial objects, like human beings do. Traditional statistical methods count the co-occurrences or shared information of objects to measure their similarity. However, human recognition of similarity is sometimes too complex to be simulated by simple mathematical equations. Given this reality, a neural network based feature matching model is proposed in this dissertation to realize an automatic similarity measurement based on the KB populated as suggested above. Finally, this dissertation introduces two research projects: the USGS Arctic Spatial Data Infrastructure and the ESIP Semantic Web Testbed to demonstrate how the proposed methodologies are applied to domain applications to solve real-world problems." @default.
- W206117183 created "2016-06-24" @default.
- W206117183 creator A5013412329 @default.
- W206117183 creator A5048422487 @default.
- W206117183 date "2010-01-01" @default.
- W206117183 modified "2023-09-26" @default.
- W206117183 title "Automated data discovery, reasoning and ranking in support of building an intelligent geospatial search engine" @default.
- W206117183 hasPublicationYear "2010" @default.
- W206117183 type Work @default.
- W206117183 sameAs 206117183 @default.
- W206117183 citedByCount "0" @default.
- W206117183 crossrefType "dissertation" @default.
- W206117183 hasAuthorship W206117183A5013412329 @default.
- W206117183 hasAuthorship W206117183A5048422487 @default.
- W206117183 hasConcept C120567893 @default.
- W206117183 hasConcept C124101348 @default.
- W206117183 hasConcept C134306372 @default.
- W206117183 hasConcept C136764020 @default.
- W206117183 hasConcept C13743948 @default.
- W206117183 hasConcept C189430467 @default.
- W206117183 hasConcept C205649164 @default.
- W206117183 hasConcept C23123220 @default.
- W206117183 hasConcept C2522767166 @default.
- W206117183 hasConcept C2777516300 @default.
- W206117183 hasConcept C33923547 @default.
- W206117183 hasConcept C36503486 @default.
- W206117183 hasConcept C41008148 @default.
- W206117183 hasConcept C58640448 @default.
- W206117183 hasConcept C93518851 @default.
- W206117183 hasConcept C9770341 @default.
- W206117183 hasConceptScore W206117183C120567893 @default.
- W206117183 hasConceptScore W206117183C124101348 @default.
- W206117183 hasConceptScore W206117183C134306372 @default.
- W206117183 hasConceptScore W206117183C136764020 @default.
- W206117183 hasConceptScore W206117183C13743948 @default.
- W206117183 hasConceptScore W206117183C189430467 @default.
- W206117183 hasConceptScore W206117183C205649164 @default.
- W206117183 hasConceptScore W206117183C23123220 @default.
- W206117183 hasConceptScore W206117183C2522767166 @default.
- W206117183 hasConceptScore W206117183C2777516300 @default.
- W206117183 hasConceptScore W206117183C33923547 @default.
- W206117183 hasConceptScore W206117183C36503486 @default.
- W206117183 hasConceptScore W206117183C41008148 @default.
- W206117183 hasConceptScore W206117183C58640448 @default.
- W206117183 hasConceptScore W206117183C93518851 @default.
- W206117183 hasConceptScore W206117183C9770341 @default.
- W206117183 hasLocation W2061171831 @default.
- W206117183 hasOpenAccess W206117183 @default.
- W206117183 hasPrimaryLocation W2061171831 @default.
- W206117183 hasRelatedWork W139347393 @default.
- W206117183 hasRelatedWork W1689577823 @default.
- W206117183 hasRelatedWork W2006953140 @default.
- W206117183 hasRelatedWork W2016886335 @default.
- W206117183 hasRelatedWork W2082874614 @default.
- W206117183 hasRelatedWork W2090209224 @default.
- W206117183 hasRelatedWork W2134755874 @default.
- W206117183 hasRelatedWork W2284404685 @default.
- W206117183 hasRelatedWork W2342852300 @default.
- W206117183 hasRelatedWork W2472153280 @default.
- W206117183 hasRelatedWork W2495374806 @default.
- W206117183 hasRelatedWork W2803417737 @default.
- W206117183 hasRelatedWork W2891326837 @default.
- W206117183 hasRelatedWork W2897501115 @default.
- W206117183 hasRelatedWork W2912053280 @default.
- W206117183 hasRelatedWork W3155034017 @default.
- W206117183 hasRelatedWork W3155969895 @default.
- W206117183 hasRelatedWork W3161076921 @default.
- W206117183 hasRelatedWork W3211158778 @default.
- W206117183 hasRelatedWork W816855285 @default.
- W206117183 isParatext "false" @default.
- W206117183 isRetracted "false" @default.
- W206117183 magId "206117183" @default.
- W206117183 workType "dissertation" @default.