Matches in SemOpenAlex for { <https://semopenalex.org/work/W2061278275> ?p ?o ?g. }
- W2061278275 endingPage "2944" @default.
- W2061278275 startingPage "2908" @default.
- W2061278275 abstract "Almost all presentations of Dirac theory in first or second quantization in Physics (and Mathematics) textbooks make use of covariant Dirac spinor fields. An exception is the presentation of that theory (first quantization) offered originally by Hestenes and now used by many authors. There, a new concept of spinor field (as a sum of non homogeneous even multivectors fields) is used. However, a carefully analysis (detailed below) shows that the original Hestenes definition cannot be correct since it conflicts with the meaning of the Fierz identities. In this paper we start a program dedicated to the examination of the mathematical and physical basis for a comprehensive definition of the objects used by Hestenes. In order to do that we give a preliminary definition of algebraic spinor fields (ASF) and Dirac-Hestenes spinor fields (DHSF) on Minkowski spacetime as some equivalence classes of well defined pairs of mathematical objects, one of the members of the pair being an even nonhomegeneous differential form. The necessity of our definitions are shown by a carefull analysis of possible formulations of Dirac theory and the meaning of the set of Fierz identities. We believe that the present paper clarifies some misunderstandings (past and recent) appearing on the literature of the subject. It will be followed by a sequel paper where definitive definitions of ASF and DHSF are given as appropriate sections a vector bundle called the left spin-Clifford bundle. The present paper contains also Appendices (A-E) which exhibits a truly useful collection of results concerning the theory of Clifford algebras (including many `tricks of the trade') necessary for the intelligibility of the text." @default.
- W2061278275 created "2016-06-24" @default.
- W2061278275 creator A5029563034 @default.
- W2061278275 date "2004-06-14" @default.
- W2061278275 modified "2023-10-02" @default.
- W2061278275 title "Algebraic and Dirac–Hestenes spinors and spinor fields" @default.
- W2061278275 cites W116631525 @default.
- W2061278275 cites W1203473075 @default.
- W2061278275 cites W1494258518 @default.
- W2061278275 cites W1512988917 @default.
- W2061278275 cites W1531967612 @default.
- W2061278275 cites W1538440836 @default.
- W2061278275 cites W1546411974 @default.
- W2061278275 cites W1558007282 @default.
- W2061278275 cites W1573408822 @default.
- W2061278275 cites W1591207645 @default.
- W2061278275 cites W1642000085 @default.
- W2061278275 cites W180607422 @default.
- W2061278275 cites W1835799325 @default.
- W2061278275 cites W1973090494 @default.
- W2061278275 cites W1974864523 @default.
- W2061278275 cites W1978131093 @default.
- W2061278275 cites W1979658058 @default.
- W2061278275 cites W1980160396 @default.
- W2061278275 cites W1981152586 @default.
- W2061278275 cites W1984921722 @default.
- W2061278275 cites W1985866855 @default.
- W2061278275 cites W1986020520 @default.
- W2061278275 cites W1991799006 @default.
- W2061278275 cites W2000109703 @default.
- W2061278275 cites W2001669096 @default.
- W2061278275 cites W2005428548 @default.
- W2061278275 cites W2009195484 @default.
- W2061278275 cites W2011545203 @default.
- W2061278275 cites W2012754732 @default.
- W2061278275 cites W2014328917 @default.
- W2061278275 cites W2025813122 @default.
- W2061278275 cites W2026847210 @default.
- W2061278275 cites W2030841742 @default.
- W2061278275 cites W2038478000 @default.
- W2061278275 cites W2041678328 @default.
- W2061278275 cites W2043161465 @default.
- W2061278275 cites W2045391670 @default.
- W2061278275 cites W2048510332 @default.
- W2061278275 cites W2048782316 @default.
- W2061278275 cites W2059278673 @default.
- W2061278275 cites W2060526122 @default.
- W2061278275 cites W2060998859 @default.
- W2061278275 cites W2061933587 @default.
- W2061278275 cites W2063003447 @default.
- W2061278275 cites W2066672356 @default.
- W2061278275 cites W2066703109 @default.
- W2061278275 cites W2068657212 @default.
- W2061278275 cites W2070629588 @default.
- W2061278275 cites W2072502481 @default.
- W2061278275 cites W2073825042 @default.
- W2061278275 cites W2075333807 @default.
- W2061278275 cites W2075944006 @default.
- W2061278275 cites W2082418447 @default.
- W2061278275 cites W2083227386 @default.
- W2061278275 cites W2085716148 @default.
- W2061278275 cites W2106039524 @default.
- W2061278275 cites W2107715215 @default.
- W2061278275 cites W2114535947 @default.
- W2061278275 cites W2122584739 @default.
- W2061278275 cites W2123563523 @default.
- W2061278275 cites W2127865535 @default.
- W2061278275 cites W2146452420 @default.
- W2061278275 cites W2159062715 @default.
- W2061278275 cites W2163062910 @default.
- W2061278275 cites W2165831245 @default.
- W2061278275 cites W2331463321 @default.
- W2061278275 cites W3046918446 @default.
- W2061278275 cites W3105418914 @default.
- W2061278275 cites W3105765344 @default.
- W2061278275 cites W3189842748 @default.
- W2061278275 cites W4210592614 @default.
- W2061278275 cites W53945751 @default.
- W2061278275 cites W92559843 @default.
- W2061278275 doi "https://doi.org/10.1063/1.1757037" @default.
- W2061278275 hasPublicationYear "2004" @default.
- W2061278275 type Work @default.
- W2061278275 sameAs 2061278275 @default.
- W2061278275 citedByCount "62" @default.
- W2061278275 countsByYear W20612782752013 @default.
- W2061278275 countsByYear W20612782752014 @default.
- W2061278275 countsByYear W20612782752015 @default.
- W2061278275 countsByYear W20612782752016 @default.
- W2061278275 countsByYear W20612782752017 @default.
- W2061278275 countsByYear W20612782752020 @default.
- W2061278275 countsByYear W20612782752022 @default.
- W2061278275 countsByYear W20612782752023 @default.
- W2061278275 crossrefType "journal-article" @default.
- W2061278275 hasAuthorship W2061278275A5029563034 @default.
- W2061278275 hasBestOaLocation W20612782752 @default.
- W2061278275 hasConcept C100856211 @default.
- W2061278275 hasConcept C121332964 @default.
- W2061278275 hasConcept C136119220 @default.