Matches in SemOpenAlex for { <https://semopenalex.org/work/W2061344596> ?p ?o ?g. }
- W2061344596 endingPage "1037" @default.
- W2061344596 startingPage "1032" @default.
- W2061344596 abstract "Sexual reproduction involves epigenetic reprogramming [1Morgan H.D. Santos F. Green K. Dean W. Reik W. Epigenetic reprogramming in mammals.Hum. Mol. Genet. 2005; 14: R47-R58Crossref PubMed Scopus (999) Google Scholar] comprising DNA methylation [2Reik W. Dean W. Walter J. Epigenetic reprogramming in mammalian development.Science. 2001; 293: 1089-1093Crossref PubMed Scopus (2286) Google Scholar] and histone modifications [3Krishnamoorthy T. Chen X. Govin J. Cheung W.L. Dorsey J. Schindler K. Winter E. Allis C.D. Guacci V. Khochbin S. et al.Phosphorylation of histone H4 Ser1 regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis.Genes Dev. 2006; 20: 2580-2592Crossref PubMed Scopus (81) Google Scholar, 4Liu H. Kim J.M. Aoki F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos.Development. 2004; 131: 2269-2280Crossref PubMed Scopus (178) Google Scholar, 5van der Heijden G.W. Dieker J.W. Derijck A.A. Muller S. Berden J.H. Braat D.D. van der Vlag J. de Boer P. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote.Mech. Dev. 2005; 122: 1008-1022Crossref PubMed Scopus (263) Google Scholar, 6Delaval K. Govin J. Cerqueira F. Rousseaux S. Khochbin S. Feil R. Differential histone modifications mark mouse imprinting control regions during spermatogenesis.EMBO J. 2007; 26: 720-729Crossref PubMed Scopus (168) Google Scholar]. In addition, dynamics of HISTONE3 (H3) variant H3.3 upon fertilization are conserved in animals, suggesting an essential role [7Ooi S.L. Priess J.R. Henikoff S. Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans.PLoS Genet. 2006; 2: e97Crossref PubMed Scopus (80) Google Scholar, 8Torres-Padilla M.E. Bannister A.J. Hurd P.J. Kouzarides T. Zernicka-Goetz M. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos.Int. J. Dev. Biol. 2006; 50: 455-461Crossref PubMed Scopus (194) Google Scholar, 9Loppin B. Bonnefoy E. Anselme C. Laurencon A. Karr T.L. Couble P. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus.Nature. 2005; 437: 1386-1390Crossref PubMed Scopus (250) Google Scholar]. In contrast to H3, H3.3 marks actively transcribed regions of the genome and can be deposited in a replication-independent manner [10Tagami H. Ray-Gallet D. Almouzni G. Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis.Cell. 2004; 116: 51-61Abstract Full Text Full Text PDF PubMed Scopus (927) Google Scholar, 11Mito Y. Henikoff J.G. Henikoff S. Genome-scale profiling of histone H3.3 replacement patterns.Nat. Genet. 2005; 37: 1090-1097Crossref PubMed Scopus (410) Google Scholar]. Although H3 variants are conserved in plants, their dynamics during fertilization have remained unexplored. We overcame technical limitations to live imaging of the fertilization process in Arabidopsis thaliana and studied dynamics of the male-gamete-specific H3.3 [12Okada T. Endo M. Singh M.B. Bhalla P.L. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3.Plant J. 2005; 44: 557-568Crossref PubMed Scopus (150) Google Scholar] and the centromeric Histone Three Related 12 (HTR12) [13Talbert P.B. Masuelli R. Tyagi A.P. Comai L. Henikoff S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant.Plant Cell. 2002; 14: 1053-1066Crossref PubMed Scopus (283) Google Scholar]. The double-fertilization process in plants produces the zygote and the embryo-nourishing endosperm [14Dresselhaus T. Cell-cell communication during double fertilization.Curr. Opin. Plant Biol. 2006; 9: 41-47Crossref PubMed Scopus (70) Google Scholar]. We show that the zygote is characterized by replication-independent removal of paternal H3.3 and homogeneous incorporation of parental chromatin complements. In the endosperm, the paternal H3.3 is passively diluted by replication while the paternal chromatin remains segregated apart from the maternal chromatin (gonomery). Hence epigenetic regulations distinguish the two products of fertilization in plants. H3.3-replication-independent dynamics and gonomery also mark the first zygotic divisions in animal species [5van der Heijden G.W. Dieker J.W. Derijck A.A. Muller S. Berden J.H. Braat D.D. van der Vlag J. de Boer P. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote.Mech. Dev. 2005; 122: 1008-1022Crossref PubMed Scopus (263) Google Scholar, 15Callaini G. Riparbelli M.G. Fertilization in Drosophila melanogaster: Centrosome inheritance and organization of the first mitotic spindle.Dev. Biol. 1996; 176: 199-208Crossref PubMed Scopus (77) Google Scholar]. We thus propose the convergent selection of parental epigenetic imbalance involving H3 variants in sexually reproducing organisms." @default.
- W2061344596 created "2016-06-24" @default.
- W2061344596 creator A5008038171 @default.
- W2061344596 creator A5012187265 @default.
- W2061344596 creator A5077273429 @default.
- W2061344596 creator A5080550485 @default.
- W2061344596 creator A5089534816 @default.
- W2061344596 date "2007-06-01" @default.
- W2061344596 modified "2023-10-16" @default.
- W2061344596 title "Distinct Dynamics of HISTONE3 Variants between the Two Fertilization Products in Plants" @default.
- W2061344596 cites W1487878375 @default.
- W2061344596 cites W1590538608 @default.
- W2061344596 cites W1821797507 @default.
- W2061344596 cites W1845466659 @default.
- W2061344596 cites W1975407196 @default.
- W2061344596 cites W1975859486 @default.
- W2061344596 cites W1985928446 @default.
- W2061344596 cites W1987708515 @default.
- W2061344596 cites W1992312226 @default.
- W2061344596 cites W1992660918 @default.
- W2061344596 cites W1999330214 @default.
- W2061344596 cites W2008543992 @default.
- W2061344596 cites W2012612933 @default.
- W2061344596 cites W2018217912 @default.
- W2061344596 cites W2020002203 @default.
- W2061344596 cites W2025493485 @default.
- W2061344596 cites W2036341780 @default.
- W2061344596 cites W2044210971 @default.
- W2061344596 cites W2044499740 @default.
- W2061344596 cites W2047638806 @default.
- W2061344596 cites W2051852571 @default.
- W2061344596 cites W2054206752 @default.
- W2061344596 cites W2058176738 @default.
- W2061344596 cites W2059383371 @default.
- W2061344596 cites W2064072721 @default.
- W2061344596 cites W2068103782 @default.
- W2061344596 cites W2086278272 @default.
- W2061344596 cites W2091471612 @default.
- W2061344596 cites W2091601313 @default.
- W2061344596 cites W2093627161 @default.
- W2061344596 cites W2098094952 @default.
- W2061344596 cites W2101184507 @default.
- W2061344596 cites W2109522067 @default.
- W2061344596 cites W2109630962 @default.
- W2061344596 cites W2120085393 @default.
- W2061344596 cites W2126388763 @default.
- W2061344596 cites W2127431151 @default.
- W2061344596 cites W2135011830 @default.
- W2061344596 cites W2135109832 @default.
- W2061344596 cites W2136802597 @default.
- W2061344596 cites W2146833933 @default.
- W2061344596 cites W2154317408 @default.
- W2061344596 cites W2162965164 @default.
- W2061344596 cites W2168454152 @default.
- W2061344596 cites W2171767359 @default.
- W2061344596 cites W2324577556 @default.
- W2061344596 cites W2789288718 @default.
- W2061344596 doi "https://doi.org/10.1016/j.cub.2007.05.019" @default.
- W2061344596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17555967" @default.
- W2061344596 hasPublicationYear "2007" @default.
- W2061344596 type Work @default.
- W2061344596 sameAs 2061344596 @default.
- W2061344596 citedByCount "232" @default.
- W2061344596 countsByYear W20613445962012 @default.
- W2061344596 countsByYear W20613445962013 @default.
- W2061344596 countsByYear W20613445962014 @default.
- W2061344596 countsByYear W20613445962015 @default.
- W2061344596 countsByYear W20613445962016 @default.
- W2061344596 countsByYear W20613445962017 @default.
- W2061344596 countsByYear W20613445962018 @default.
- W2061344596 countsByYear W20613445962019 @default.
- W2061344596 countsByYear W20613445962020 @default.
- W2061344596 countsByYear W20613445962021 @default.
- W2061344596 countsByYear W20613445962022 @default.
- W2061344596 countsByYear W20613445962023 @default.
- W2061344596 crossrefType "journal-article" @default.
- W2061344596 hasAuthorship W2061344596A5008038171 @default.
- W2061344596 hasAuthorship W2061344596A5012187265 @default.
- W2061344596 hasAuthorship W2061344596A5077273429 @default.
- W2061344596 hasAuthorship W2061344596A5080550485 @default.
- W2061344596 hasAuthorship W2061344596A5089534816 @default.
- W2061344596 hasBestOaLocation W20613445961 @default.
- W2061344596 hasConcept C104317684 @default.
- W2061344596 hasConcept C150194340 @default.
- W2061344596 hasConcept C153911025 @default.
- W2061344596 hasConcept C190727270 @default.
- W2061344596 hasConcept C2776745794 @default.
- W2061344596 hasConcept C2779473830 @default.
- W2061344596 hasConcept C41091548 @default.
- W2061344596 hasConcept C54355233 @default.
- W2061344596 hasConcept C55493867 @default.
- W2061344596 hasConcept C64927066 @default.
- W2061344596 hasConcept C77255625 @default.
- W2061344596 hasConcept C83640560 @default.
- W2061344596 hasConcept C83867959 @default.
- W2061344596 hasConcept C86803240 @default.
- W2061344596 hasConceptScore W2061344596C104317684 @default.
- W2061344596 hasConceptScore W2061344596C150194340 @default.