Matches in SemOpenAlex for { <https://semopenalex.org/work/W2061551520> ?p ?o ?g. }
- W2061551520 endingPage "328" @default.
- W2061551520 startingPage "317" @default.
- W2061551520 abstract "ConspectusRedox-neutral methods for the functionalization of amine α-C–H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C–H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts.Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet–Spengler, and Kabachnik–Fields reactions, Friedel–Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C–H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct.Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic processes, have been identified as common intermediates. Extension of this chemistry to amine α,β-difunctionalization has been shown to be possible by way of converting the intermediate azomethine ylides into transient enamines.This Account details the evolution of this general strategy and the progress made to date. Further included is a discussion of related decarboxylative reactions and transformations that result in the redox-neutral aromatization of (partially) saturated cyclic amines. These processes also involve azomethine ylides, reactive intermediates that appear to be far more prevalent in condensation chemistry of amines and carbonyl compounds than previously considered. In contrast, as exemplified by some redox transformations that have been studied in greater detail, iminium ions are not necessarily involved in all amine/aldehyde condensation reactions." @default.
- W2061551520 created "2016-06-24" @default.
- W2061551520 creator A5033182199 @default.
- W2061551520 date "2015-01-06" @default.
- W2061551520 modified "2023-10-17" @default.
- W2061551520 title "The Azomethine Ylide Route to Amine C–H Functionalization: Redox-Versions of Classic Reactions and a Pathway to New Transformations" @default.
- W2061551520 cites W1484833342 @default.
- W2061551520 cites W1963973539 @default.
- W2061551520 cites W1965371357 @default.
- W2061551520 cites W1968801531 @default.
- W2061551520 cites W1970436622 @default.
- W2061551520 cites W1970674021 @default.
- W2061551520 cites W1973295092 @default.
- W2061551520 cites W1979879544 @default.
- W2061551520 cites W1982119660 @default.
- W2061551520 cites W1994559999 @default.
- W2061551520 cites W1996747355 @default.
- W2061551520 cites W1996904274 @default.
- W2061551520 cites W1996941025 @default.
- W2061551520 cites W2010912983 @default.
- W2061551520 cites W2013306802 @default.
- W2061551520 cites W2015573047 @default.
- W2061551520 cites W2018954224 @default.
- W2061551520 cites W2020893833 @default.
- W2061551520 cites W2021012312 @default.
- W2061551520 cites W2030548535 @default.
- W2061551520 cites W2031615919 @default.
- W2061551520 cites W2039238670 @default.
- W2061551520 cites W2040989712 @default.
- W2061551520 cites W2048218058 @default.
- W2061551520 cites W2048578391 @default.
- W2061551520 cites W2052258174 @default.
- W2061551520 cites W2054376935 @default.
- W2061551520 cites W2056105475 @default.
- W2061551520 cites W2059082512 @default.
- W2061551520 cites W2070069600 @default.
- W2061551520 cites W2070238795 @default.
- W2061551520 cites W2087219327 @default.
- W2061551520 cites W2093261801 @default.
- W2061551520 cites W2093760219 @default.
- W2061551520 cites W2099932084 @default.
- W2061551520 cites W2103669203 @default.
- W2061551520 cites W2106142750 @default.
- W2061551520 cites W2109150210 @default.
- W2061551520 cites W2114934455 @default.
- W2061551520 cites W2124413449 @default.
- W2061551520 cites W2128434938 @default.
- W2061551520 cites W2128911849 @default.
- W2061551520 cites W2129400521 @default.
- W2061551520 cites W2141940334 @default.
- W2061551520 cites W2144577976 @default.
- W2061551520 cites W2148736202 @default.
- W2061551520 cites W2157175706 @default.
- W2061551520 cites W2161719739 @default.
- W2061551520 cites W2168408603 @default.
- W2061551520 cites W2317933435 @default.
- W2061551520 cites W2321993633 @default.
- W2061551520 cites W2323156048 @default.
- W2061551520 cites W2325770534 @default.
- W2061551520 cites W2325830269 @default.
- W2061551520 cites W2327832461 @default.
- W2061551520 cites W2330015842 @default.
- W2061551520 cites W2949167623 @default.
- W2061551520 cites W4205734821 @default.
- W2061551520 cites W4248056894 @default.
- W2061551520 cites W4327494098 @default.
- W2061551520 cites W4361794745 @default.
- W2061551520 doi "https://doi.org/10.1021/ar5003768" @default.
- W2061551520 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4334269" @default.
- W2061551520 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25560649" @default.
- W2061551520 hasPublicationYear "2015" @default.
- W2061551520 type Work @default.
- W2061551520 sameAs 2061551520 @default.
- W2061551520 citedByCount "200" @default.
- W2061551520 countsByYear W20615515202015 @default.
- W2061551520 countsByYear W20615515202016 @default.
- W2061551520 countsByYear W20615515202017 @default.
- W2061551520 countsByYear W20615515202018 @default.
- W2061551520 countsByYear W20615515202019 @default.
- W2061551520 countsByYear W20615515202020 @default.
- W2061551520 countsByYear W20615515202021 @default.
- W2061551520 countsByYear W20615515202022 @default.
- W2061551520 countsByYear W20615515202023 @default.
- W2061551520 crossrefType "journal-article" @default.
- W2061551520 hasAuthorship W2061551520A5033182199 @default.
- W2061551520 hasBestOaLocation W20615515201 @default.
- W2061551520 hasConcept C115537861 @default.
- W2061551520 hasConcept C131779359 @default.
- W2061551520 hasConcept C147789679 @default.
- W2061551520 hasConcept C161790260 @default.
- W2061551520 hasConcept C178790620 @default.
- W2061551520 hasConcept C178907741 @default.
- W2061551520 hasConcept C185592680 @default.
- W2061551520 hasConcept C198503264 @default.
- W2061551520 hasConcept C21951064 @default.
- W2061551520 hasConcept C2778567177 @default.
- W2061551520 hasConcept C55904794 @default.
- W2061551520 hasConcept C75079739 @default.