Matches in SemOpenAlex for { <https://semopenalex.org/work/W2061614912> ?p ?o ?g. }
- W2061614912 endingPage "190" @default.
- W2061614912 startingPage "177" @default.
- W2061614912 abstract "Application of two-step approach of evapotranspiration (ET) crop coefficients (Kc) to “approximate” a very complex process of actual evapotranspiration (ETa) for field crops has been practiced by water management community. However, the use of Kc, and in particular the concept of growing degree days (GDD) to estimate Kc, have not been sufficiently studied for estimation of evaporative losses from riparian vegetation. Our study is one of the first to develop evapotranspiration crop coefficient (KcET) curves for mixed riparian vegetation and transpiration (TRP) crop coefficients (KcTRP) for individual riparian species as a function GDD through extensive field campaigns conducted in 2009 and 2010 in the Platte River Basin in central Nebraska, USA. KcTRP values for individual riparian vegetation species [Common reed (Phragmites australis), Cottonwood (Populus deltoids) and Peach-leaf willow (Salix amygdaloides)] were quantified from the TRP rates obtained using scaled-up canopy resistance from measured leaf-level stomatal resistance and reference evapotranspiration. The KcET and KcTRP curves were developed for alfalfa-reference (KcrET and KcrTRP) surface. The seasonal average mixed riparian plant community KcrET was 0.89 in 2009 and 1.27 in 2010. In 2009, the seasonal average KcrTRP values for Common reed, Cottonwood and Peach-leaf willow were 0.57, 0.51 and 0.62, respectively. In 2010, the seasonal average KcrTRP were 0.69, 0.62 and 0.83 for the same species, respectively. In general, TRP crop coefficients had less interannual variability than the KcrET. Response of the vegetation to flooding in 2010 played an important role on the interannual variability of KcrET values. We demonstrated good performance and reliability of developed GDD-based KcrTRP curves by using the curves developed for 2009 to predict TRP rates of individual species in 2010. Using the KcrTRP curves developed during the 2009 season, we were able to predict the TRP rates for Common reed, Cottonwood and Peach-leaf willow in 2010 within 7%, 8% and 13% accuracy, indicating a good performance of the two-step approach proposed in this study for estimating TRP for riparian vegetation. The surface conditions of the riparian ecosystem need to be considered when using the two-step approach to estimate ETa or TRP rates of riparian plant communities. The results of this study provide important water use information and data for riparian vegetation that can be used for more robust hydrologic/water balance analyses." @default.
- W2061614912 created "2016-06-24" @default.
- W2061614912 creator A5008475752 @default.
- W2061614912 creator A5012601523 @default.
- W2061614912 creator A5017685140 @default.
- W2061614912 creator A5027307846 @default.
- W2061614912 creator A5074296013 @default.
- W2061614912 creator A5078636802 @default.
- W2061614912 date "2013-02-01" @default.
- W2061614912 modified "2023-10-07" @default.
- W2061614912 title "Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for Common reed, Cottonwood and Peach-leaf willow in the Platte River Basin, Nebraska-USA" @default.
- W2061614912 cites W1965115805 @default.
- W2061614912 cites W1969974566 @default.
- W2061614912 cites W1970004911 @default.
- W2061614912 cites W1979444767 @default.
- W2061614912 cites W1990655636 @default.
- W2061614912 cites W1995363365 @default.
- W2061614912 cites W1996703723 @default.
- W2061614912 cites W2001324795 @default.
- W2061614912 cites W2001448697 @default.
- W2061614912 cites W2001834071 @default.
- W2061614912 cites W2033904036 @default.
- W2061614912 cites W2034930918 @default.
- W2061614912 cites W2039294279 @default.
- W2061614912 cites W2047818213 @default.
- W2061614912 cites W2048522459 @default.
- W2061614912 cites W2055162687 @default.
- W2061614912 cites W2068211602 @default.
- W2061614912 cites W2070677382 @default.
- W2061614912 cites W2075951128 @default.
- W2061614912 cites W2086589063 @default.
- W2061614912 cites W2096529503 @default.
- W2061614912 cites W2099298540 @default.
- W2061614912 cites W2124200526 @default.
- W2061614912 cites W2159221478 @default.
- W2061614912 cites W2168710921 @default.
- W2061614912 cites W2170109415 @default.
- W2061614912 cites W2184786537 @default.
- W2061614912 cites W2592645659 @default.
- W2061614912 doi "https://doi.org/10.1016/j.jhydrol.2012.12.032" @default.
- W2061614912 hasPublicationYear "2013" @default.
- W2061614912 type Work @default.
- W2061614912 sameAs 2061614912 @default.
- W2061614912 citedByCount "47" @default.
- W2061614912 countsByYear W20616149122013 @default.
- W2061614912 countsByYear W20616149122014 @default.
- W2061614912 countsByYear W20616149122015 @default.
- W2061614912 countsByYear W20616149122016 @default.
- W2061614912 countsByYear W20616149122017 @default.
- W2061614912 countsByYear W20616149122018 @default.
- W2061614912 countsByYear W20616149122019 @default.
- W2061614912 countsByYear W20616149122020 @default.
- W2061614912 countsByYear W20616149122021 @default.
- W2061614912 countsByYear W20616149122022 @default.
- W2061614912 crossrefType "journal-article" @default.
- W2061614912 hasAuthorship W2061614912A5008475752 @default.
- W2061614912 hasAuthorship W2061614912A5012601523 @default.
- W2061614912 hasAuthorship W2061614912A5017685140 @default.
- W2061614912 hasAuthorship W2061614912A5027307846 @default.
- W2061614912 hasAuthorship W2061614912A5074296013 @default.
- W2061614912 hasAuthorship W2061614912A5078636802 @default.
- W2061614912 hasConcept C101000010 @default.
- W2061614912 hasConcept C11731853 @default.
- W2061614912 hasConcept C127313418 @default.
- W2061614912 hasConcept C128758860 @default.
- W2061614912 hasConcept C137660486 @default.
- W2061614912 hasConcept C142724271 @default.
- W2061614912 hasConcept C149712012 @default.
- W2061614912 hasConcept C157517311 @default.
- W2061614912 hasConcept C176783924 @default.
- W2061614912 hasConcept C183688256 @default.
- W2061614912 hasConcept C185933670 @default.
- W2061614912 hasConcept C187320778 @default.
- W2061614912 hasConcept C18903297 @default.
- W2061614912 hasConcept C2776133958 @default.
- W2061614912 hasConcept C2777945561 @default.
- W2061614912 hasConcept C2780844648 @default.
- W2061614912 hasConcept C2781178838 @default.
- W2061614912 hasConcept C39432304 @default.
- W2061614912 hasConcept C59822182 @default.
- W2061614912 hasConcept C6557445 @default.
- W2061614912 hasConcept C67715294 @default.
- W2061614912 hasConcept C71924100 @default.
- W2061614912 hasConcept C72551326 @default.
- W2061614912 hasConcept C76886044 @default.
- W2061614912 hasConcept C86803240 @default.
- W2061614912 hasConceptScore W2061614912C101000010 @default.
- W2061614912 hasConceptScore W2061614912C11731853 @default.
- W2061614912 hasConceptScore W2061614912C127313418 @default.
- W2061614912 hasConceptScore W2061614912C128758860 @default.
- W2061614912 hasConceptScore W2061614912C137660486 @default.
- W2061614912 hasConceptScore W2061614912C142724271 @default.
- W2061614912 hasConceptScore W2061614912C149712012 @default.
- W2061614912 hasConceptScore W2061614912C157517311 @default.
- W2061614912 hasConceptScore W2061614912C176783924 @default.
- W2061614912 hasConceptScore W2061614912C183688256 @default.
- W2061614912 hasConceptScore W2061614912C185933670 @default.
- W2061614912 hasConceptScore W2061614912C187320778 @default.