Matches in SemOpenAlex for { <https://semopenalex.org/work/W2061800743> ?p ?o ?g. }
- W2061800743 endingPage "660" @default.
- W2061800743 startingPage "649" @default.
- W2061800743 abstract "Wind power generation is increasing very rapidly all around the world. The available wind energy depends on the wind speed, which is a random variable and depends on the location and weather conditions. For the wind-farm operator, this uncertainty creates difficulty in the system scheduling and energy dispatching. Due to this there is a need for predicting the wind speed, i.e., power in advance. The first consideration in predictive wind speed is the selection of appropriate input variables. Many variables are available for wind speed prediction, and some of them cannot be omitted without a significant loss of information. The collection of field data, on the other hand, is both time-consuming and expensive. This becomes more complex and costly as the number of variable's increases. Due to this, rigorous methods are needed to detect which variables are essential and important and, which are not. Appropriate selection of input variables is not only important for modeling objectives as such, but also to ensure reliable decision-support in unit commitment and energy policy-making. In this paper, application of genetic algorithms is explored to automatically select the relevant input variables for Artificial Neural Networks (ANNs). The applied database consisted of 12 different variables, which are measured from Jaipur (Rajasthan). The measured variables are a combination of temperature, wind and atmospheric. The genetic algorithm selects different combinations of input variables and applies them to back-propagation ANN network for wind speed prediction. The ANN predicts the wind speed using the selected variable set and then the various combinations are compared based on their predictive power. With this technique, the number of input variables could be reduced from 13 to 8. In addition, the prediction success increases by the maximum 5 percent. The data requirement, calculation time, memory requirement, complexity of the ANN, cost of measuring equipments, etc. reduces due to removal of irrelevant data from the process." @default.
- W2061800743 created "2016-06-24" @default.
- W2061800743 creator A5020528670 @default.
- W2061800743 creator A5052848876 @default.
- W2061800743 creator A5073679510 @default.
- W2061800743 date "2011-12-01" @default.
- W2061800743 modified "2023-10-16" @default.
- W2061800743 title "Selection of Input Variables for the Prediction of Wind Speed in Wind Farms Based on Genetic Algorithm" @default.
- W2061800743 cites W1498436455 @default.
- W2061800743 cites W1990771923 @default.
- W2061800743 cites W2045002121 @default.
- W2061800743 cites W2099631309 @default.
- W2061800743 cites W2108604074 @default.
- W2061800743 cites W2133633527 @default.
- W2061800743 cites W2135998216 @default.
- W2061800743 cites W2144690949 @default.
- W2061800743 cites W2151767444 @default.
- W2061800743 cites W2169980881 @default.
- W2061800743 doi "https://doi.org/10.1260/0309-524x.35.6.649" @default.
- W2061800743 hasPublicationYear "2011" @default.
- W2061800743 type Work @default.
- W2061800743 sameAs 2061800743 @default.
- W2061800743 citedByCount "6" @default.
- W2061800743 countsByYear W20618007432014 @default.
- W2061800743 countsByYear W20618007432015 @default.
- W2061800743 countsByYear W20618007432018 @default.
- W2061800743 countsByYear W20618007432019 @default.
- W2061800743 countsByYear W20618007432022 @default.
- W2061800743 countsByYear W20618007432023 @default.
- W2061800743 crossrefType "journal-article" @default.
- W2061800743 hasAuthorship W2061800743A5020528670 @default.
- W2061800743 hasAuthorship W2061800743A5052848876 @default.
- W2061800743 hasAuthorship W2061800743A5073679510 @default.
- W2061800743 hasConcept C11413529 @default.
- W2061800743 hasConcept C119599485 @default.
- W2061800743 hasConcept C119857082 @default.
- W2061800743 hasConcept C121332964 @default.
- W2061800743 hasConcept C124101348 @default.
- W2061800743 hasConcept C126255220 @default.
- W2061800743 hasConcept C127413603 @default.
- W2061800743 hasConcept C134306372 @default.
- W2061800743 hasConcept C148483581 @default.
- W2061800743 hasConcept C153294291 @default.
- W2061800743 hasConcept C161067210 @default.
- W2061800743 hasConcept C177264268 @default.
- W2061800743 hasConcept C182365436 @default.
- W2061800743 hasConcept C199360897 @default.
- W2061800743 hasConcept C202444582 @default.
- W2061800743 hasConcept C206729178 @default.
- W2061800743 hasConcept C27574286 @default.
- W2061800743 hasConcept C33923547 @default.
- W2061800743 hasConcept C41008148 @default.
- W2061800743 hasConcept C50644808 @default.
- W2061800743 hasConcept C78600449 @default.
- W2061800743 hasConcept C81917197 @default.
- W2061800743 hasConcept C8880873 @default.
- W2061800743 hasConcept C9652623 @default.
- W2061800743 hasConceptScore W2061800743C11413529 @default.
- W2061800743 hasConceptScore W2061800743C119599485 @default.
- W2061800743 hasConceptScore W2061800743C119857082 @default.
- W2061800743 hasConceptScore W2061800743C121332964 @default.
- W2061800743 hasConceptScore W2061800743C124101348 @default.
- W2061800743 hasConceptScore W2061800743C126255220 @default.
- W2061800743 hasConceptScore W2061800743C127413603 @default.
- W2061800743 hasConceptScore W2061800743C134306372 @default.
- W2061800743 hasConceptScore W2061800743C148483581 @default.
- W2061800743 hasConceptScore W2061800743C153294291 @default.
- W2061800743 hasConceptScore W2061800743C161067210 @default.
- W2061800743 hasConceptScore W2061800743C177264268 @default.
- W2061800743 hasConceptScore W2061800743C182365436 @default.
- W2061800743 hasConceptScore W2061800743C199360897 @default.
- W2061800743 hasConceptScore W2061800743C202444582 @default.
- W2061800743 hasConceptScore W2061800743C206729178 @default.
- W2061800743 hasConceptScore W2061800743C27574286 @default.
- W2061800743 hasConceptScore W2061800743C33923547 @default.
- W2061800743 hasConceptScore W2061800743C41008148 @default.
- W2061800743 hasConceptScore W2061800743C50644808 @default.
- W2061800743 hasConceptScore W2061800743C78600449 @default.
- W2061800743 hasConceptScore W2061800743C81917197 @default.
- W2061800743 hasConceptScore W2061800743C8880873 @default.
- W2061800743 hasConceptScore W2061800743C9652623 @default.
- W2061800743 hasIssue "6" @default.
- W2061800743 hasLocation W20618007431 @default.
- W2061800743 hasOpenAccess W2061800743 @default.
- W2061800743 hasPrimaryLocation W20618007431 @default.
- W2061800743 hasRelatedWork W1521207074 @default.
- W2061800743 hasRelatedWork W2022111921 @default.
- W2061800743 hasRelatedWork W2108824233 @default.
- W2061800743 hasRelatedWork W2119244117 @default.
- W2061800743 hasRelatedWork W2359549665 @default.
- W2061800743 hasRelatedWork W2369231024 @default.
- W2061800743 hasRelatedWork W2382761789 @default.
- W2061800743 hasRelatedWork W2386058197 @default.
- W2061800743 hasRelatedWork W2392110728 @default.
- W2061800743 hasRelatedWork W2605829224 @default.
- W2061800743 hasVolume "35" @default.
- W2061800743 isParatext "false" @default.
- W2061800743 isRetracted "false" @default.